
October 2011

Master Dissertation
Master in Industrial Electronics and Computers Engineering

Dissertation work done under the scientifc orientation of
Professor Estela Guerreiro Silva Bicho Erlhagen

Tiago Emanuel Quintas Malheiro

Object Transportation Task by a Human and
a Mobile Manipulator:
a non-linear attractor dynamics approach

Universidade do Minho
Escola de Engenharia

Acknowledgments

I wish to leave here my gratefulness to the people who aided me in writing my
dissertation.

My thanks and appreciation go to Professor Estela Bicho, who stirred up my
interest in this issue and for helping me with my work with patience throughout
the time it took me to complete my research and write the dissertation.

To Doctor Sérgio Monteiro, thank you for your valuable and institutional support.

I wish to thank to Toni Machado and Miguel Sousa, whose extensive technical and
moral support were fundamental during the research, especially in the experiments
with the robot, and in the writing of the dissertation.

I am grateful to my Mobile and Anthropomorphic Robotics Laboratory colleagues
and friends Luís Louro, Rui Silva, Flora Ferreira, Eliana Silva and Emanuel Sousa
for helping me in many ways, above all, creating a good working environment.

I wish to thank to my parents and family for encouragement during all my studies
and for always be there for me.

Finally, a singular thank you to my friends, especially Vitor Silva, who gave me a
continuous moral support, and Tânia Peixoto, whose kindness and endless support
I will never forget.

iii

Resumo

A interação humano-robô na execução de tarefas cooperativas tem uma forte apli-
cabilidade no nosso quotidiano. Diversas tarefas, entre as quais o transporte de
objetos de grandes dimensões, podem beneficiar da associação entre a inteligência
humana e a velocidade e destreza dos robôs. Estes sistemas robóticos devem ser
capazes de cooperar autonomamente com humanos, apresentando um comporta-
mento suave e tendo em consideração as ações do humano.

Nesta dissertação, pretendemos desenvolver um manipulador móvel autónomo,
capaz de transportar cooperativamente um objeto longo com um humano até uma
localização alvo. Assim como em muitas tarefas cooperativas entre humanos, a
comunicação verbal e não-verbal constituí um aspeto fundamental para o sucesso
da tarefa em questão, especialmente quando esta é executada num ambiente não
estruturado, contendo vários obstáculos, tanto estáticos como dinâmicos.

Inicialmente é feita uma descrição do hardware e do software desenvolvidos que
constituem o manipulador móvel. De seguida, propomos uma aproximação ao
problema do transporte de objetos por um humano e um manipulador robótico
tendo por base a abordagem dos Sistemas Dinâmicos à Geração de Comporta-
mentos. A teoria de sistemas dinâmicos não lineares é utilizada para a conceção
e implementação do comportamento do robô sendo que a direção e a velocidade
do movimento são obtidas a partir de soluções atractoras dos sistemas dinâmicos.
Adotamos uma estratégia líder-seguidor para a tarefa cooperativa de transporte
de objeto, onde o humano (líder) procura o melhor caminho para a localização
alvo enquanto o robô deve assistir o humano no transporte e ao mesmo tempo ser
capaz de se desviar de obstáculos.

Os resultados obtidos demonstram que o robô é capaz de gerar o seu comporta-
mento e este é suave e robusto mesmo lidando com a incerteza que caracteriza
a maioria dos ambientes. Toda a informação é recolhida pelo seu sistema sen-

v

sorial. Quando o robô não consegue acompanhar um determinado movimento do
humano (como entrar em passagens estreitas ou velocidades elevadas), este é capaz
de alertar verbalmente o humano para a situação.

Abstract

Human-Robot interaction in cooperative tasks has a large application in our ev-
eryday life. Several tasks, such as transporting a long object, may benefit from the
association of human intelligence and robot speed and dexterity. Such robot sys-
tems must autonomously cooperate with the human, exhibiting a smooth behavior
and taking into account the human’s actions.

In this dissertation, we aim to develop an autonomous mobile manipulator able to
cooperatively transport a long object with a human partner to a goal location. As
in most human-human cooperative tasks, verbal and non-verbal communication is
a key feature to the success of the task in hand, specially when it is performed in
an unstructured and cluttered environment, with static and dynamic obstacles.

We begin with a description of the hardware and software developed that consti-
tute the mobile manipulator. Later, we propose an approach to Human-Mobile
manipulator object transportation based on the Dynamical Systems approach to
Behavior Generation. Non-linear dynamical systems theory is used to design and
implement the robot’s behavior. The time course of robot’s heading direction and
path velocity are obtained from attractor solutions of the dynamical systems. We
adopt a leader-follower strategy to the object transportation task, where the goal
location is given to the human (leader) and the robot should assist the human
while, at the same time, being able to avoid obstacles.

The results show the ability of the robot to generate its own behavior, based on the
information from the environment, which is gathered by the robot’s own sensory
system while the task is executed. The robot’s navigation is very smooth and
robust when dealing with uncertainties of the environments. Furthermore, the
robot is able to verbally express itself when it can not perform certain movements
required by the human (such as a narrow passages or high velocities).

vii

Contents

1 Introduction 1
1.1 Motivation and Problem statement 1
1.2 Previous Work . 4
1.3 Scope and Outline of the Dissertation 9

2 Theoretical Framework: Non-linear Dynamical Systems 13
2.1 Basic Principles . 14

2.1.1 Behavioral Variables . 14
2.1.2 Behavioral Dynamics . 16

3 The Mobile Manipulator: Dumbo 23
3.1 Hardware . 23

3.1.1 Mobile Platform . 25
3.1.2 Manipulator (Arm) . 27

3.2 Software . 29
3.2.1 Hardware Abstraction Layer 31
3.2.2 High Level Software . 37

3.3 Kinematics . 56
3.4 Conclusion . 58

4 A Dynamical Architecture for Control and Coordination of the
Mobile Manipulator 59
4.1 Strategy Adopted . 59
4.2 System design . 64

4.2.1 The dynamics of heading direction 65
4.2.2 The dynamics of path velocity 74
4.2.3 Speech . 75

5 Results and Discussion 79

ix

5.1 Scenario 1: Entrance Hall . 79
5.2 Scenario 2: Corridor . 88
5.3 Stability . 88
5.4 Summary and Discussion . 90

6 Conclusion and Outlook 93

Bibliography 95

x

List of Figures

1.1 Human-Robot object transportation 2

2.1 Robot heading direction behavioral variable 15
2.2 Unstable and stable equilibrium points 17
2.3 Fourphase plots of one dimensional dynamical systems 18

3.1 Robot Dumbo: (a) Front and (b) Back view 24
3.2 Robot Dumbo Layers . 25
3.3 Used Manipulator . 28
3.4 Force/Moment sensor . 29
3.5 Developed Software Architecture 30
3.6 Network Wrapper and Module . 32
3.7 Hardware Abstraction Layer . 32
3.8 Locomotion device operation . 34
3.9 Obstacles device asynchronous operation 36
3.10 Monitor Application . 37
3.11 Yarp Connections Manager Dialog Window 38
3.12 Result file from Obstacles in Monitor 41
3.13 Monitor Speech Synthesis Dropdown menu 41
3.14 Send Installation files sequence diagram 42
3.15 Send CoopTrans executable sequence diagram 43
3.16 Task Controller configuration file 43
3.17 Cooperative Transportation Group 44
3.18 Organization of Components: Monitor ↔ Task Controller 45
3.19 Sequence diagram for Cooperative Transportation execution session 46
3.20 Sample of data acquired with cluster 1 and 99 50
3.21 Two Structure columns in range of laser scan 50
3.22 Measurement parameters . 51
3.23 Matlab_Viewer . 55

xi

3.24 Sequence diagram for Matlab_Viewer session 56
3.25 Sequence diagram for a fast Matlab_Viewer GUI 57
3.26 Robot Kinematics . 57

4.1 Free rotational joint . 60
4.2 Transportation task posture for the mobile manipulator 61
4.3 Human as Target . 62
4.4 Moment Signal from force/moment sensor 62
4.5 Passage too narrow for safety movements between obstacles 63
4.6 Verbal communication in problematic situations 63
4.7 Target acquisition and obstacle avoidance task constraints 66
4.8 Resultant Attractors . 67
4.9 Relative angle between human and robot 67
4.10 Dynamics of heading direction for target acquisition behavior 68
4.11 Parameters of obstacle avoidance behavior 69
4.12 Dynamics of heading direction for single obstacle 69
4.13 Angular range repulsion σi . 70
4.14 Dynamics of heading direction for obstacle avoidance behavior . . . 71
4.15 Sigmoid function for obstacles contribution 72
4.16 Integration of Target and Obstacles behaviors 73
4.17 Sigmoid threshold function of potential U (φ) 75

5.1 Entrance Hall videos perspectives 80
5.2 Snapshots sequence and dynamics for entrance hall scenario 83
5.2 Continued. 84
5.2 Continued. 85
5.2 Continued. 86
5.2 Continued. 87
5.3 Snapshots sequence and dynamics for Corridor scenario 89
5.3 Continued. 90
5.4 Stability analysis for Entrance Hall Scenario 91
5.5 Stability analysis for Corridor Scenario 91

xii

List of Tables

3.1 Joints Limits . 27
3.2 Force/Moment Sensor Limits . 28
3.3 Gripper . 28
3.4 Laser Range Finder Parameters . 51

4.1 Transportation task posture for mobile manipulator 61

xiii

xiv

Chapter 1

Introduction

1.1 Motivation and Problem statement

Human-Robot cooperation is one of the key technologies to broaden the appli-
cation field of robots. Using the strengths of both human and robot the system
will be effective in more elaborated tasks where robots used to be inapplicable.
More explicitly, this system may benefit of human intelligence and problem solv-
ing skills and robot speed and dexterity to perform autonomously a task where
only a human-human partnership or a specific designed robot system would be
able to perform (Green et al., 2008).

The combination of this opportunity and the recent development of robot tech-
nologies is taking several researchers to work towards robots that exhibit a smooth
behavior and that take into account the human actions. Leading robots to acquire
a place in humans environment and cooperate autonomously with them accom-
plishing many different tasks.

One of the problems addressed in Human-Robot cooperation is object transporta-
tion (Lawitzky et al., 2010; Bicho et al., 2003; Takubo et al., 2002). Large or long
objects are usually difficult to transport by grasping only a single point. The task
may be enhanced if a human holds one end of the object and a robot the other
one. The two partners may this way easily transport the object from one point
to the destination point without the frustration felt by a human when such large,
long or irregular objects are transported by grasping near the object’s center of
mass.

1

Figure 1.1: Human-Robot object transportation

In the problem addressed in this dissertation, see Figure 1.1, the human brings
intelligence and experience to the task, global task knowledge, as goal and path
planning, while the robot must help the human to transport the object avoid-
ing static and dynamic obstacles. At same time, the robot should interact with
the human to express its intentions, and alerting the human partner when some
proposed movement is not feasible to be performed by the robot.

In order to perform such cooperative transportation task, a mobile manipulator,
instead of a simple mobile robot as in Bicho et al. (2003), may bring some en-
hancements to the task. First, combining a mobile platform and a multi-link
manipulator creates redundancy, allowing that a particular movement of the hu-
man partner may be followed by the robot moving the manipulator, moving the
mobile platform or a combined motion of both. Second, because of slow dynamic
response of the mobile platform, the manipulator introduces more dynamic inter-
action between robot and human in cooperative transportation. Third, it enables
the robot to fetch the object to transport, and lower it down in the destination
without the need of a third partner (human or robot) to do it.

Despite mobile manipulators offer a tremendous potential for object transportation
and other tasks, they bring about a number of challenging issues rather than
simply increasing the structural complex of it. From the point of view of the
cooperating robot (i.e. mobile manipulator) the environment, which consists of the
manipulated object, the human and world scenario (static or dynamic), exhibits
complex dynamic behavior. The problem is exacerbated when the environment
is unknown and changing, since decisions must be made on-line and according to
those changes.

2

Several, and different, approaches have been proposed to solve these problems.
Some of the most relevant reported results in the literature include the use of
passive robotics concepts (Goswami et al., 1990; Hirata and Kosuge, 2000; Fukaya
et al., 2006), compliant motion (Hogan, 1985; Yamamoto et al., 1996), virtual
nonholonomic constraints (Takubo et al., 2002), load sharing (Choi et al., 1992;
Lawitzky et al., 2010), Human intention recognition and motion estimation (De
Carli et al., 2009; Maeda et al., 2001) and behavioral-based approaches (Bicho
et al., 2003).

It seemed a reasonable requirement that autonomous mobile manipulators be reac-
tive to dynamic aspects of the environment and be able to generate robust behavior
in the face of uncertain sensors, unpredictable environment, and a changing world.
Making human-robot collaboration natural and efficient is crucial and is the major
issue concerning the control of the robot under such conditions. The movements
have to be smooth and the robot must exhibit a behavior that is aware that its
movement may influence its partner movement, since humans have to interact
with the robot transporting the object without letting it to fall. Behavior-based
approaches have become the dominant methodologies for designing control schemes
for robot interaction with the environment. One of them is the so called Dynamic
Approach to Behavior Generation (Schöner and Dose, 1992; Schöner et al., 1995;
Bicho and Schöner, 1997a; Steinhage, 1997) which is based on the mathematical
theory of non-linear dynamics. It provides a theoretical framework and tools that
allow designing a control architecture that generates the behavior of the cooper-
ating robot.

This approach has been extensively and successfully implemented in mobile robot
navigation (Bicho, 2000; Large et al., 1999; Althaus, 2003), multiple robots coor-
dination for object transportation and formations (Soares and Bicho, 2002; Soares
et al., 2007; Soares, 2007; Monteiro and Bicho, 2010), mobile manipulator navi-
gation (Ellekilde and Christensen, 2009), and Human-Mobile robot object trans-
portation (Bicho et al., 2003).

Results have shown that robot navigation is very smooth and robust when dealing
with uncertainties of the environment. Furthermore, a mobile robot was able to
successfully transport an object with a human. These results lead us to believe that
the dynamical systems approach is especially well suited for mobile manipulator
control in the context of Human-Robot cooperative transportation task.

3

1.2 Previous Work

Particularly focused on human safety, passive robotics concepts have been pro-
posed by Goswami et al. (1990), in which systems move passively according to
an external force without using any joint actuator. Using the concepts of passive
robotics, Fukaya et al. (2006) introduced a concept of passive robotics for realizing
a physical interaction between Human and Robot safely on an object transporta-
tion system. Despite the continuous work on that concept (Hirata et al., 2006,
2009, 2011), there are some situations were such passive robots can not generate
enough force for supporting human’s motion. The necessary force to keep the
object on track may have a certain direction and magnitude such that the passive
robot does not have enough brake units to generate the desired force. Wannasupho-
prasit et al. (1997) and Lynch and Liu (2000) studied the design of passive guide
constraint, which assists the human in manipulating a load. In these approaches,
the guide confines the load to a one degree-of-freedom curve in its configuration
space.

Hirata and Kosuge (2000) proposed distributed robot helpers, referred to as DR
Helpers, and a decentralized control algorithm for them to transport a single object
in cooperation with a human/humans.

The distributed robot helpers are multiple autonomous mobile robots, which were
developed for enabling a human to move a heavy or large object without any human
assistant. In the algorithm proposed, each robot is controlled as if it has caster-like
dynamics and interacts with the human through a intentional force/moment that
the human applies to the object. Based on this intentional force/moment, the robot
transports the object in cooperation with the human. This algorithm is designed
based on the passivity-based control system to guarantee the stable realization
(Hirata and Kosuge, 2000) of human-robot interaction through a manipulated
object.

Nevertheless, in a system using the proposed approach by Hirata and Kosuge
(2000) a human could not easily manipulate a large object if each robot is controlled
passively along all directions (Hirata et al., 2001). The authors pointed out that
the human may not be able to apply a moment precisely to a grasping point of
the human to adjust the orientation of the object. Furthermore the human would
also have to apply intentional force/moments to the object precisely to transport
it to the destination avoiding obstacles (Hirata et al., 2001; Arai et al., 2000).

4

To overcome this problem, Hirata et al. (2001) suggested a system where each
robot has a map information of the environment where it will be deployed. Under
the assumption that this system is used in a known environment such as an office,
a hospital and a home, etc., each robot could generate a path on the known
environment and move along with a path velocity based on the intentional force
applied by a human. In this system the human could transport an object easily
together with multiple robots avoiding static (known) obstacles. In addition, the
human would not have to apply a moment to the object to change the orientation
of the motion.

Despite the good performance in human-robot object transportation reported
when robots are controlled based in such approaches, the applicability of that
systems is very limited. First, forcing a robot (or team of robots) to follow a
pre-specified path does not allow changes in the specified task such as a new des-
tination point. More critical, since these systems are intended to “live” in human
environments, it are not able to avoid dynamic or unknown static obstacles, which
may imply the failure of the task execution. Second, changes to the environment
would have to be represented in each robot accordingly. Third, such approach
requires some mechanism for position estimation as dead reckoning, which may
accumulate positioning errors and lead robot out of desired path.

Compliant motion has been addressed by several researchers (Hogan, 1985; Al-
Jarrah and Zheng, 1997a; Ikeura and Inooka, 1995) as an approach for robot-
environment and human-robot interaction where both the dynamic behavior and
the position of the manipulator are controlled based on the concept of mechanical
impedance (Hogan, 1985).

Ikeura et al. (1994) investigated the human characteristics in a task in which two
humans cooperated with each other in carrying an object. It was shown that the
damping factor is important for cooperation when the human characteristics are
approximated by impedance control.

It was shown that in human-robot cooperation based on impedance control, the
human can not operate as quickly as in human-human when the damping factor is
high. However, when the damping factor is low, the human can perform the task
quickly but the positioning operation is not stable. This problem arises from the
fact that conventional control uses constant impedance. Ikeura and Inooka (1995)
applied these results to a human-robot cooperation task. The impedance charac-
teristics were changed according to the speed of the motion and it was verified that

5

the human was able to perform quick actions and with the same controller having
a positioning action without oscillations. From this, better cooperation charac-
teristics are given to the robot when the control is based on variable impedance
control instead of conventional control based on constant impedance.

Al-Jarrah and Zheng (1997a) proposed a reflexive motion control as a coordination
mechanism for a manipulator to share the load with the human arm. Reflexive
motion is an inspiration of biological systems where muscular activities are regu-
lated via reflexes. The authors applied this approach to a manipulator to reduce
the strain on the human arm and to increase the speed of the manipulation on the
object.

Takubo et al. (2002) proposed a virtual nonholonomic constraint approach in order
to solve some problems identified in impedance control. As stated before, Kosuge
et al. (1993); Ikeura and Inooka (1995); Al-Jarrah and Zheng (1997a) proposed
impedance control based approaches. However, it is difficult to apply a large
moment at the end of a long object and the force the operator exerts is mainly
translational. Though axial translation is easy, the rotation and normal translation
may cause side-slip of the object and complicate the manipulation (Takubo et al.,
2002; Arai et al., 2000). To solve this problem, Takubo et al. (2002) proposed a
method that suppresses the side-slip of the object by assigning a virtual constraint
at the robot hand (the translational velocity at the robot hand is restricted only in
the axial direction), which is equivalent to a wheel being attached to the object in
the axial direction. With this approach the human may intuitively understand the
object’s behavior because the direction of mobility of the object is restricted by
the nonholonomic constraint, which implies the human to steer the manipulation
as a cart or wheelbarrow.

Yamamoto et al. (1996) proposed an approach which actively utilizes the loco-
motion and manipulation of a mobile manipulator to transport a large object
cooperatively with a human. Here, no a priori planning was assumed by the robot
and the human takes the lead while the mobile manipulator supports the object
jointly and following the human. The approach preferred operating region was
adopted by the authors as a coordination mechanism between the platform and
the manipulator. The control of the manipulator is achieved by two parts: force
control in inertial z-axis direction to sustain the object, actively compensate the
dynamics of the manipulator in xy-plane and make the manipulator free-floating
inside the plane. This way, the manipulator will be dragged to move in xy-plane

6

by the friction force between the end effector and the object. They have used the
manipulability measure of the manipulator as a criterion for optimal coordination
of both platform and manipulator motions. However, the necessary force to move a
joint of the manipulator may be to high and supersedes the friction force between
the end-effector and the object not allowing that the manipulator even moves.
If the manipulability of the manipulator does not change, the task may not be
executable since the platform coordinates the movement based on that measure.
Furthermore, manipulator joints may exert different forces when it moves in one
direction and then in the opposite, which may lead the manipulator to a constant
low manipulability state.

Pereira et al. (2010) proposed an approach to transport an object by a mobile
nonholonomic robot in coordination with a human using a non-linear controller.
Instead of a conventional force/moment sensor at the robot end-effector, they used
two infra-red sensors to measure the displacement on the support of the object to
be carried. In this approach, the object size is assumed to be known a priori, which
may not be always available or not practical to be acquired when the task may be
executed several times with different object sizes.

Another important issue in human-robot cooperation is the load sharing problem.
Several researchers studied the load sharing problem in the dual manipulator co-
ordination (Choi et al., 1992; Kim and Zheng, 1991). However, to the success of
the task, the motions of the manipulators are assumed to be known. This is im-
practical in human-robot cooperation since no predefined path is given, therefore
object motion may be unknown to the robot.

To overcome this problem, Al-Jarrah and Zheng (1997b) proposed a load sharing
method using variable compliance control. Using information of the force/moment
from the end-effector as a measure to change the impedance of the compliant
control, the authors verified that the load sharing between a manipulator and a
human may be improved. Increasing the impedance of the manipulator will result
in increasing the force being exerted by the operator. The desired behavior is
then to decrease impedance, which will result in more force being exerted by the
manipulator.

Lawitzky et al. (2010) proposed a systematic derivation of the effort sharing policies
from a system-theoretic analysis of the joint object manipulation task under en-
vironmental constraints. They have considered three different policies: Balanced-
effort behavior; Maximum-robot-effort behavior and Minimum-robot-effort behav-

7

ior. This parametrization of load sharing policies with respect of their degree of
assistance allows the tuning of the pro-activity of the robot. Besides the over-
all performance of the suggested approach, a commonly known trajectory of the
object configuration was assumed, which is impractical in real-world applications
since most of robot tasks are subjected to uncertainty.

Different approaches for human-robot cooperation have also been proposed based
on Human intent measuring and recognition (De Carli et al., 2009; Fernandez
et al., 2001) and motion estimation (Maeda et al., 2001).

De Carli et al. (2009) proposed an impedance-based approach with user intent
measuring feature. The user can induce the robot to adopt a new path by pushing
the load sufficiently far off the current path such that the magnitude of force that
should be applied by the robot to keep the load on path is higher than a pre-
selected threshold. This makes the robot to “store” the new path direction and
change manipulator movement accordingly to human intent. When this occurs, a
new path is computed and, regardless of the particular path adopted, at the time
of adoption, the new path will be precisely the one intentioned by the user which
makes the robot applied force to decrease. This sudden change will be apparent
to the user. They propose to take advantage of this response (measuring it by
physiological biometric sensors) in order to confirm the user’s recognition that the
path has changed.

Fernandez et al. (2001) introduced an intention recognition approach for active
human-mobile manipulator cooperation. Like others, the human is the leader and
the robot the follower. The interaction between human and robot is based on
force/moment sensor. When using impedance control based approaches, the hu-
man has to continuously exert a certain force to maintain the movement. Through
intention recognition the robot cooperative behavior can be active, reducing the
human effort and makes transportation faster. The authors proposed an intention
recognition mechanism based on the search for spectral patterns in the force signal
measured at the manipulator gripper. They have shown that a system designed
based on intention recognition demonstrates satisfactory performance. Despite the
success, the system needs an improvement in robustness (Fernandez et al., 2001)
and robot movement does not integrate obstacles avoidance capabilities.

Maeda et al. (2001) have also proposed an approach for active human-robot co-
operation based on motion estimation. Using virtual compliance control as basis
of manipulation movement, the authors estimate the position of the human hand

8

and treat it as the desired position of virtual compliance control. The motion of
the human partner is estimated with the minimum jerk model which gives human
characteristics to motion estimation and therefore to the overall movement of the
manipulator. They have reported that using this approach the human could ma-
nipulate the object has intended and the manipulation was not as “heavy” as when
they turned off motion estimation. In this approach, no a priori path was given
to the robot and the velocity of the movement was left to human intent. How-
ever, for simplicity, the task was carried under limited movement of horizontal one
dimensional transportation of the object.

Another approach considered in the literature to human-robot collaboration in
transportation tasks is the Behavior-based approach. Bicho et al. (2003) proposed
a dynamic control architecture, as a Behavior-based approach, based on non-linear
dynamical systems, that controls the behavior of the autonomous robot (without a
manipulator) that must transport a large size object in cooperation with a human.
In the proposed approach, the robot has no a priori knowledge of the environment
and no absolute position mechanism is embedded on the robot. The robot nav-
igation is based on information of target orientation relatively to robot heading
direction and obstacles orientation and distance. As the sensed world changes, the
robot’s behavior is changed accordingly. It was shown that the system is robust
against perturbations, stable and the trajectories are smooth, while the robot helps
the human to carry a long object in a unstructured indoor environment.

In this dissertation we aim to extend the previous work into the domain of Human-
Mobile manipulator cooperation, which must integrate verbal and non-verbal com-
munication.

1.3 Scope and Outline of the Dissertation

We first aimed to setup a mobile manipulator,which involves both hardware and
software, and later propose an approach to Human-Robot (mobile manipulator)
object transportation based on the Dynamical approach Systems Behavior Gener-
ation. More specifically, we use a leader-follower approach to control the mobile
manipulator behavior so that it cooperatively transports a large object with a hu-
man, in unstructured and dynamic environments. The motor control of the plat-
form and manipulator relies on the attractor dynamics approach to behavior-based
robotics (Bicho, 2000) where a smooth and stable trajectory should be generated

9

even in the presence of environment constraints such as avoidance with as static
or dynamic obstacles.

This means that non-linear dynamical systems theory is used to design and imple-
ment the robot’s behavior. Specifically, the time course of the control variables are
obtained from solutions of dynamical systems. The attractor solutions (asymp-
totically stable states) dominate these solutions by design. The benefit is that
overt behavior of the robot is generated as a time course of asymptotically sta-
ble states, that, therefore, contribute to the overall asymptotic stability of the
complete control system and makes it robust against perturbations.

In this work only real robot implementations and experiments were taken into
account. One of the important results stressed here is the ability of the robot
to generate its own behavior based on the information locally gathered from the
environment while the task is executed. Opposing to most of the proposed ap-
proaches in literature, the robot does not have a map of the environment, neither
a pre-planned path is given to the robot and it is able anyway to successfully
avoid unknown static and dynamic obstacles. Another important feature is the
attributed capability of self expressing verbally to the human when an intended
movement is not feasible to be performed by the robot itself and to give advice on
possible movement alternatives.

The remainder of this dissertation is organized as follows:

In Chapter 2, basic principles of non-linear dynamical systems are covered as a ba-
sis for behavior generation for the robot’s dynamical control architecture presented
in Chapter 4.

Chapter 3 provides a description of the mobile manipulator that has been built
in the scope of this dissertation. Hardware features of the mobile manipulator,
referred here as Dumbo, are presented followed by a exposure of developed software
to interface with hardware. Also auxiliary software developed to monitor the robot
is briefly presented, and robot kinematics is given as a point to behavioral variables.

Based on principles given in Chapter 2, a Dynamical Systems Architecture is
designed in Chapter 4. Target acquisition and obstacles avoidance behaviors are
studied. Furthermore, dynamics of path velocity are introduced.

We continue to Chapter 5 where experimental results are reported in a variety
of scenarios prepared to demonstrate the robot’s overt behavior and support the

10

proposed Dynamical Architecture developed in Chapter 4. The chapter ends with
a summary and discussion of achieved results.

Finally, conclusion and future work are drawn in Chapter 6.

11

12

Chapter 2

Theoretical Framework:
Non-linear Dynamical Systems

Non-Linear Dynamical Systems approach was introduced as a framework to be-
havior generation by Schöner and Dose (1992) and Schöner et al. (1995). In these
works, a number of concepts were provided as a theoretical language to design
autonomous robotic architectures. These concepts are based on the mathematical
theory of dynamical systems and two main basic ideas are described here: (1)
The concept of behavioral variables, which consists of variables that can describe
a particular behavior and define behavioral dimensions along which behavior can
change. Specific values of these variables correspond to task constraints. (2) The
concept of behavioral dynamics according to which behaviors are generated as at-
tractor solutions of dynamical systems.

This chapter follows the presentation provided by the chapter entitled The dy-
namical approach to behavior generation in the PhD work “Dynamic Approach
to Behavior-Based Robotics: Design, Specification, Analysis, Simulation and Im-
plementation” (Bicho, 2000) with the proper authorization of the author Estela
Bicho.

13

2.1 Basic Principles

2.1.1 Behavioral Variables

To design a behavior in the context of the dynamic approach, the first step is to
find variables that can describe, parameterize and internally represent the behav-
ior (state of the system). These variables are called behavioral variables. They
define behavioral dimensions along which behavior can change. A specific instance
of the behavior corresponds to a point in the space of the behavioral dimensions.
Behavioral variables must be chosen such that the following requirements are ful-
filled:

a) At any time a behavior must be associated with particular values of its
corresponding behavioral variables and task requirements must be expressed
as values or set of values of these variables.

b) The specified values for a behavioral variable, that express the task, must be
independent of its current value.

c) It must be possible to specify the values by the on-board sensors or by another
behavioral model (for example a representation system).

d) Finally, and very important, the behavioral variables must enable the design
of control systems that impose their values on an effector system.

Now we give an example that aimes to clarify these requirements. In the task of
autonomous robot navigation in the plane the movement must be controlled such
that locations of obstacles are avoided while a particular target position is reached.
To express the behavior that this movement represents the heading direction, φ,
in the world (i.e. relative to some arbitrary but fixed world axis), is an adequate
variable since (see Figure 2.1):

First, task requirements of moving toward the target while avoiding collisions
with obstacles can be expressed as particular independent values of the
heading direction. The direction Ψtar represents the orientation at which
the target lies from the current view point relative to the world axis, while
Ψobs represents the direction at which the obstacle is seen. Moving toward
the target, which is a desired behavioral state, is associated with φ = Ψtar.
Conversely, moving toward an obstacle is associated with φ = Ψobs, and is of
course an undesirable behavioral state.

14

Figure 2.1: An adequate behavioral variable for the task of moving in the plain
toward a target location while avoiding to run into obstacles

Second, if the robot turns on the spot the specified values Ψtar and Ψobs, either
desired or to be avoided, for the heading direction are kept invariant, i.e.
the specified values Ψtar and Ψobs do not depend on the current value of
the behavioral variable (i.e. φ). Since the values expressing the task to be
performed (φ = Ψtar expressing target acquisition and φ 6= Ψobs expressing
obstacle avoidance) are independent from the current value for the heading
direction the individual behaviors can be designed independently from each
other.

Third, on-board sensors may specify the values Ψobs and Ψtar as long as an esti-
mate of the current orientation of the robot in the world is maintained (in
reality, the correct calibration of this value is not fundamental as long as the
calibration drift is slow).

Finally, the heading direction can be easily controlled by providing incremental
commands to the vehicle’s motors or to a steering module.

Path velocity and angular velocity are also appropriate behavioral variables for
the example given above (Neven and Schöner, 1996; Bicho and Schöner, 1997a,b;
Bicho et al., 2000, 1998). This will become clear as we present the material in this
dissertation.

15

2.1.2 Behavioral Dynamics

The next step is to generate values for the behavioral variables in time, which
control the robot’s action. For this purpose a dynamical system for the behavioral
variables is designed. Mathematically such dynamical system is time-continuous
and is defined by a differential equation in which the dynamical state variables are
the behavioral variables. For example, for the heading direction, φ, a dynamical
system defines the temporal rate of change of the heading direction as a function
of the current value, i.e.

dφ(t)
dt

= f(φ(t), parameters) (2.1)

The function f(·) defines a vector field; i.e. to each point in the state space it
assigns a vector f(φ). Each of these vectors determine the direction in which
and the rate with which the system will move from the point where the vector is
anchored.

Fixed points: Attractors and Repellers

As a design principle, we are interested in a particular type of solutions of dynam-
ical systems called fixed points or equilibrium solutions. These are the points at
which the vector field is null,

dφ(t)
dt
|φ = φfixed point = f(φfixed point) = 0 (2.2)

Fixed points are, in other words, constant solutions of the dynamical system: The
system does not change state in time. But the system being “stuck” in a state
does not mean that it is stable. This is depicted in Figure 2.2.

For a dynamical system in one variable the stability of the fixed points can easily
be investigated graphically. This is illustrated in Figure 2.3. Panels A and B in
Figure 2.3 depict a linear and a non-linear dynamical system, respectively. These
two dynamical systems exhibit a fixed point at φ = φA. Because the slope at this
fixed point is negative, the fixed point is an asymptotically stable state. In this
case the fixed point is also called an attractor because it attracts the behavioral
variable to the value specified by the fixed point. To see this consider a value
slightly to the right of the fixed point φA, i.e. φ1. At this point because the rate of
change of the behavioral variable is negative the system is driven toward decreasing

16

Figure 2.2: Unstable and stable equilibrium points. Initially the two balls are in
rest. The black ball is at an equilibrium point at the top of a hill. This is an
unstable equilibrium point since a very small perturbation will send it down. By
contrast the gray ball is at stable equilibrium point. Once the perturbation ceases
to act the ball returns to its initial point

values of the behavioral variable, i.e. toward the fixed point. Analogously, at points
starting to the left of this fixed point, for example φ2, the rate of growth is positive
thus driving the system toward increasing values, i.e toward the fixed point again.
When the system arrives at this fixed point it stays there. The vectors fields of
both these dynamical systems behave as attractive forces that drive the system
to the state specified by φ = φA. Thus, for example, in the target acquisition
behavior in which the direction at which the target is seen is a desired value for
the heading direction of the robot, we can make that direction an attractor by
erecting a attractive force-let (vector-field) with a zero at that direction and a
negative slope. The range of the behavioral variables over which a force-let exerts
its attractive influence can be unbounded (Panel A) or limited (Panel B). Thus,
an important concept related to the idea of attractors is the basin of attraction.
For a given attractor this refers to the region in the state space in which all initial
conditions will converge to the attractor.

Conversely, when the slope at a fixed point is positive, (Panels C and D in Fig-
ure 2.3), the fixed point is an unstable state and is called a repeller because it
repels the system from its value. This can be read on the phase plots of the dy-
namics: consider a value slightly to the left of the fixed point φB, i.e. φ3. At this
point negative rate of growth for the behavioral variable drives the system toward
decreasing values, thus driving the system away from the fixed point. Analogously

17

Figure 2.3: Four phase plots of one dimensional dynamical systems: the rate of
change dφ/dt is plotted as a function of φ. The points at which dφ/dt is zero (φA
and φB) are the fixed points of the dynamics and the slope of dφ/dt there indicates
their nature. Panel A: The system is linear with a fixed point at φ = φA. The
slope at this fixed point is negative. This makes that fixed point an attractor.
The system converges in time to the state defined by the fixed point. Panel B: A
non-linear system with a fixed point attractor also at φ = φA. As for the linear
case, the system converges in time to φA. Panel C: The system is linear with a
fixed point at φ = φB. The slope at this fixed point is positive thus making this
fixed point a repeller. The system diverges away in time from the state specified
by the fixed point. Panel D: A non-linear system with a fixed point repeller also
at φ = φB. As for the linear case, the system diverges from φB as time increases.
The direction of the arrows indicate the evolution of the behavioral variable as
time increases.

18

for a value of the behavioral variable starting to the right of the fixed point, φ4, the
system is driven toward increasing values because the rate of change is positive.
Once again the system is driven away from the fixed point. In such a case the
vector field is called a repulsive force. At the value of the fixed point the rate of
change is zero but an arbitrary small perturbation immediately causes the system
to diverge from the state (unstable) defined by the repeller. Now for example,
an obstacle can be modeled by erecting a repulsive force-let at the direction at
which the obstacle lies, because one has to prevent the heading from taking that
direction.

The range of repulsion, i.e. the region of points over which a repulsive force-let
wields its influence, can be unbounded (Panel C) or limited (Panel D).

Stability measures or strength of fixed points

For a linear dynamical system (Panels A and C in Figure 2.3) the slope determines
how strongly attractive or repulsive a fixed point is. When the fixed point is an
attractor the steeper this slope, the stronger the restoring force and the faster the
system relaxes to the attractor after a perturbation. For a repeller the steeper the
slope the faster the system relaxes away from the repeller after a perturbation.
Thus the slope represents the stability of the system in the fixed points.

Since relaxation is exponential it can be characterized by a time scale. For instance,
if an initial perturbation puts the linear system depicted in Panel A at point φ1,
then the system evolves in time according with the solution

φ(t) = φA + (φ1 − φA) exp
[
− t
τ

]
(2.3)

where τ determines the relaxation time with which the systems approaches the
fixed point φA. When shifted to a distance |φ1 − φA| from the attractor, the
system reduces this distance by a factor of e (e is the natural number) in a time
interval of τ . Relaxation is faster, the smaller the time scale τ is. Therefore, τ
can be used to characterize quantitatively the stability of the system in the fixed
points. τ can be obtained from the reciprocal of the slope of the linear vector field
at the fixed point

τ = −
[
df(φ)
dφ
|φ = φfixed point

]−1

(2.4)

Negative values for τ indicate that the corresponding fixed point is a repeller.

19

τ = 0 denotes that the fixed point is semi-stable.

For non-linear dynamical systems (Panels B and D in Figure 2.3) with hyperbolic
fixed points1 we can use the linearization method to characterize the stability of
the fixed points (Perko, 1991; Crawford, 1991). For example, a stability measure
of the attractor φA of the non-linear dynamical system depicted in Panel B may
be obtained by approximating this system to a linear system near φA. This ap-
proximation represents in essence the behavior of the non-linear system in the
neighborhood of the attractor. Expanding the vector field f(φ) in a Taylor series
around the fixed point φA and keeping only the terms up to first order yields a
dynamics with a linear vector field,

dφ

dt
= f(φ) ≈

(
df(φ)
dφ
|φ = φA

)
(φ− φA) (2.5)

the solution of which has the form of Equation (2.3) and where the time scale, τ , is
again given by the inverse of the slope of the (non-linear) vector field at the fixed
point as for the linear case. Thus, τ as given by Equation (2.4) can also be used
to characterize quantitatively the local stability of the fixed points of a non-linear
dynamical system. Strong behavioral states have very short local relaxation times.

Integration of elementary behaviors

The complete behavioral dynamics is build up from individual contributions (i.e.
force-lets), which are added to shape the complete vector field. Each force-let rep-
resents a constraint on the behavior that we are designing. Because the range of
the force-lets are limited the resulting dynamical system in non-linear. By design
one makes the system to be at all times in, or very near, an attractor so that the
overt behavior is really generated by attractor solutions of the dynamical system.
This way powerful theoretical tools from the qualitative theory of dynamical sys-
tems (Perko, 1991; Crawford, 1991; Scheinerman, 1996), such as local bifurcations
analysis, can be used to design autonomous robot architectures and quantitatively
evaluate their compliance with specifications.

Each force-let models an elementary behavior. The time scale of each elementary
behavior determines how strongly that behavior contributes to the vector field of
the behavioral variables. Thus the hierarchy of time scales also determines the

1Fixed points are called hyperbolic when they have no eigenvalues on the imaginary axis.

20

hierarchy of behaviors. Prior behaviors have smaller time scales.

Moving attractors

When attractors are static the requirement that the system must be in or near
an attractor at all times is trivially fulfilled. For a robot moving around in the
environment the specified values either desired (e.g. Ψtar) or to be avoided (e.g.
Ψobs) as well as of their strength of attraction or repulsion vary. Thus the individual
contributions to the vector field change in time and as a consequence the attractors
from the resulting dynamical system move. Since by design the system must be in
or near a stable state (attractor) at all times, the rate with which the attractors
move must be controlled so that the system is able to track the moving attractors.
This is accomplished by making the relaxation time of the dynamics much faster
than the time associated with the moving attractors.

Bifurcations

The shape of the vector field in Equation (2.1) is dependent on the parameters.
Thus changing the parameter values in time may lead to bifurcations in the un-
derlying behavioral dynamics. Bifurcations correspond to qualitative changes in
the number, nature or stability of fixed points. Local bifurcation theory helps to
make design decisions around points at which the system must switch from one
type of behavioral state to another. By driving the system through bifurcations
the robot is able to flexibly “decide” the appropriate behavior at any given time.

21

22

Chapter 3

The Mobile Manipulator: Dumbo

Before the Dynamic Architecture in Chapter 4 is introduced, we present in this
chapter the mobile manipulator, called Dumbo, that was built in the scope of this
dissertation work. The robot platform and manipulator actuators and sensors are
described. An overview of the developed software is given: Hardware abstraction
layer, monitor, control, and viewer. Finally, robot kinematics is given as a point
to behavioral variables.

3.1 Hardware

Dumbo, which is pictured in Figure 3.1, has 10 degrees of freedom (DOF), 3 axis
force/moment sensor, a laser range finder and a speaker.

There is a 7 DOF arm with an one DOF gripper attached at the tool point.
The mobile platform makes use of 2 DOF for steering and path velocity. The
sensorimotor system is managed by a network of processes attached to a Win-
dows Embedded Standard 7 operating system running on a PC. The processes
intercommunicate with high control levels via interprocess communication (IPC)
infrastructure.

All hardware modules presented are connected to a computer. This computer
is the control unit which completes all computational tasks. It has a Centrino
M 1.7GHz CPU, 2GB of RAM and 40GB of hard disk drive. To suppress all
connection requirements, a 4 port RS232 - PCI expansion card and a USB hub
was added.

23

E-Stop

Button

Arm

Laser Range

Finder

AC-DC

converter

Wireless

Acess Point

(a)

Power

distribution

box

12V battery

Caster

Wheel

Motorized

Wheel

Computer

(b)

Figure 3.1: Robot Dumbo: (a) Front and (b) Back view

24

Figure 3.2: Robot Dumbo Layers

Dumbo structure and most of the hardware components used were already avail-
able in our lab. However, the robot had to be reassembled from scratch and some
changes were implemented: (1) Laser range finder was moved from the front of
the base plate to the center; (2) Power system was redesigned. Instead of only
battery powered, Dumbo can now be connected to external AC and all the hard-
ware components are powered from a 24V source, using proper DC-DC converters
to the specific requirement of each component. Emergency stop button now only
powers off motor system, allowing the remainder hardware to be powered in an
emergency situation.

3.1.1 Mobile Platform

The structure of the platform has a cylindrical shape with a diameter of 55cm and
76cm height. It is organized in several layers (see Figure 3.2) to accommodate the
different hardware components.

Below the base plate, 2 DC (Direct Current) motors and 2 caster wheels are
responsible for locomotion of the mobile platform. Each DC motor has a gear and
a quadrature encoder attached to its shaft. The motors are set on the side of the
robot, while caster wheels are in front and back of robot. This configuration allows

25

the robot to move at a speed up to 0.2 m/s in straight line or at 0.73 rad/s when
the robot rotates about itself (i.e. about the vertical axis that goes through the
geometric center of the robot).

On the top of the base plate (first layer) we can find 2 motion controllers for the
locomotion motors. The controllers are powered at 24 VDC and are connected
to a computer through a RS232 connection. The PID (Proportional-Integrative-
Derivative) controller embedded in the motion controllers have input for quadra-
ture encoders and a PWM (Pulse Width Modulated) output for motor power
connection. At the geometric center of this plate there is a laser range finder that
is used by the robot control to get angle and distance to obstacles in the robot
navigation path. The laser range finder has a detection range of 240◦ with a reso-
lution of 0.35◦, which gives a set of 682 steps. The refresh rate of the laser range
finder is 10Hz when used in continuous mode, or lower if used in single scan mode.
This module is connected to the computer through a USB connection which has
a CDC (Communications Device Class) interface with a serial emulator. The top
of the base plate accommodates also two serial connected 12 VDC sealed lead
acid batteries. When external grid AC (Alternate Current) power is not available
(e.g. during transportation task) they are the power source for the whole system
(manipulator, platform locomotion, computer and auxiliary hardware).

The second layer accommodates the computer and an AC-DC power supply. The
computer runs Windows Embedded Standard 7 operating system and is responsible
for suppressing all computational requirements of Dumbo. Both hardware-software
interface processes and control processes share this computer. When power grid is
available, required energy to power Dumbo flows from the power grid through the
AC-DC power supply to the hardware components of Dumbo.

The third layer has the manipulator attach base, power distribution box, one
Ethernet switch and a wireless access point. The power distribution box has several
on-off switches and DC-DC converters to fulfill all different power requirements of
hardware. Outputs are of 24V, 12V, 9V and 7.5V and they are all fused.

An Ethernet switch allows a connection of others computers for debugging or
monitoring task. Wireless access point is intended to give a wireless connection
way to communicate with the control system that runs on the on-board computer
for monitoring the task when experiments are being performed.

On the top of this plat there is a digital compass and an emergency-stop button (e-

26

Table 3.1: Joints limits of the arm

Joint No. Min Pos Max Pos Min Enc Max Velo Max Acc
◦ ◦ ◦ ◦/s ◦/s2

1 −165 165 0.6 52.2 208.8
2 −15 181 0.6 52.2 208.8
3 −165 165 0.6 52.2 208.8
4 −25 196 0.5 41.2 164.8
5 −165 165 0.5 41.2 164.8
6 −120 120 2 240 960
7 −165 165 3 360 1140

stop). When experiments are being performed, better documentation is achieved
if we know the orientation of the robot heading direction relatively to an inertial
frame of reference. This digital compass gives the heading angle of the robot
relative to earth magnetic north pole. Emergency-stop button switches power off
of both manipulator and platform locomotion motors. The computer and the rest
of hardware are still powered up.

3.1.2 Manipulator (Arm)

A 7 DOF anthropomorphic manipulator is coupled to Dumbo in its right side. All
joints are rotational and all required electronics for each joint is embedded in the
arm. Each joint has an harmonic drive gear coupled to a brushless DC motor.
Low level control of each joint is also embedded on the corresponding module.
A CAN-Bus connects all modules of the manipulator to the computer through a
CAN-USB adapter. Furthermore, all joints, except the last one, has a magnetic
brake which is activated when no power is supplied to the arm(e.g. when system
is turned off or e-stop button is pressed on behalf of an eminent collision which
may damage the arm) or when a position control movement is finished.

The Manipulator modules have different physical characteristics, which does not
allow the same dexterity among them. Table 3.1 summarizes the maximum and
minimum angular positions, minimum increment, maximum angular velocity and
acceleration for each joint.

Each joint has an incremental encoder for velocity and position control. Figure 3.3
shows the manipulator with the force/moment sensor attached to the last joint and
a gripper fixed to such sensor.

27

Arm

Gripper

Force/Moment Sensor

Figure 3.3: Manipulator: Arm, Force/Moment sensor and gripper

Table 3.2: Force/Moment Sensor Limits

Units Measurable Overload
(without damage)

Fx N ±150 ±200
Fy N ±150 ±200
Fz N ±150 ±180
Mx Nm ±4 ±8
My Nm ±4 ±8
Mz Nm ±4 ±13

The force/moment sensor shown if Figure 3.4 is able to measure force and moment
in 3 orthogonal axis. It has an update rate of measurements of 1ms and Table 3.2
summarizes the maximum forces and moments measurable.

The gripper shown in Figure 3.3 has a prismatic joint with one degree of freedom.
Table 3.3 shows technical characteristics of the gripper.

Besides physically connected to the arm, both force/moment sensor and gripper
are powered by the arm and share the same CAN bus for communications.

Table 3.3: Gripper Prismatic joint characteristics

Min Pos Max Pos Min Enc Max Velo Max Acc
mm mm mm mm/s mm/s2

-10.75 78.5 0.15 80 320

28

Figure 3.4: Force/Moment sensor. The arm wrist is not the same as the one used
in this project, see Figure 3.3

3.2 Software

The software architecture developed in this project is based on a set of guiding
principles adopted in our lab as a conceptual framework. These principles have
the propose to develop software as a reusable set of libraries or processes that may
be useful over different projects.

In order to accomplish that, our software architecture is divided into devices,
control and auxiliary software as can be seen in Figure 3.5. All these different pro-
cesses provide interprocess communication mechanism through YARP, Yet An-
other Robot Platform (Metta et al., 2006). YARP, is a platform for long-term
software development for applications that underly a robot. YARP provides a
useful set of libraries and tools enabling message based IPC distributed across
multiple processes that may be running in different machines.

Regarding the distributed software architecture presented in Figure 3.5, not all
processes (applications) presented are required to run during the execution of the
transportation task considered in this project. The control application, named
Cooperative Transportation, and the devices (Obstacles, Locomotion, Speech and
Arm) do not require the presence of the rest of developed software modules (Mon-
itor, Task Controller, Matlab Viewer and Compass). These are auxiliary software
modules developed to enhance the monitoring and documentation of the task. The
robot performs its operations autonomously with its on-board resources, without

29

Cooperative

Transportation

Monitor Matlab_Viewer

Task

Controller

Obstacles
Locomo-

tion
Speech Compass Arm

Remote Interface

Robot

Figure 3.5: Developed Software Architecture. To the successful completion of the
Transportation task, only Cooperative Transportation, Obstacles, Locomotion,
Speech and Arm processes are necessary. Required resources to such task are on-
board of robot. In the figure, dashed pink line shows the connection between these
processes. All other lines illustrate the auxiliary connections created between the
different applications.

the use of any kind of external support.

The distributed software architecture enables a better control of all devices, since
each one is performing a simple task. During the development of the Dynamical
Architecture, described in Chapter 4, the control process was required to restart
several times. If all the hardware components were controlled directly by this pro-
cess, every time it restarts it would perform tests to the hardware, which would
consume too much time. Also, this enables that the developed software (net-
work_wrappers, modules and others) may be used in other projects with similar
requirements. Finally, applications with high computational cost may be allocated
to different computers (when available) for better distribution of computational
load.

All the software described in this section was developed in a host computer, being
afterwards deployed in the target computer (Dumbo robot computer), which has
low computational power. As previously mentioned, Dumbo computer runs Win-
dows Embedded Standard 7 and it was configured with the minimum resources
required to run the developed software and support drivers for peripheral hardware.

30

With this reduced installations, the operating system requires less computational
power for management and no unnecessary processes are consuming processing
time to run.

Despite most hardware modules were already available, only the speech synthesis
device and the arm device had already software developed. Nevertheless, some
performance improvements were implemented to speech synthesis. Most of error
verification to arm device (both to hardware and software interfaces, which were
developed by the Engineer Rui Silva) was implemented during the development
of this project. Also velocity control was added to arm device, since only posi-
tion control was available. Moreover, Gripper operation and force/moment sensor
commands were implemented.

Furthermore, it must be mentioned that the communication protocol between
the network_wrappers and connected clients was developed by the Engineer Toni
Machado during his PhD work. However, some performance improvements and
features as binary data sending were implemented.

3.2.1 Hardware Abstraction Layer

Each device is composed of a module and a network_wrapper, see Figure 3.6. As
illustrated in the Figure 3.7, the set of all modules available to a specific robot is
considered as the Hardware Abstraction Layer of that robot.

Each module provides a set of functions that allows an easy and abstract way to
work with the hardware component where it is attached. In the case of the motion
controllers of the platform motorized wheels, at startup, the module is responsible
for checking whether it is able to communicate successfully with both motion con-
trollers. More importantly, given a set of linear and angular velocities, the module
has the task of converting it into angular velocity of the right and left wheel, send
them as a proper command through serial connection to both motion controllers
and check whether errors occurred or not. To perform these tasks, this module
makes use of some information about the robot structure (e.g. distance between
wheels, wheels radius, gear ratio, among others.) This required information may
be read from a configuration file or provided by the network_wrapper as described
below.

A network_wrapper is a simple piece of software scaling the features (functions)

31

Control

Hardware

Network Wrapper

Module

Device

Figure 3.6: Network Wrapper and Module

Control,
Monitor, Others

Hardware
component

Wrapper

Module

Wrapper

Module

Wrapper

Module

Hardware
Abstraction
Layer

Hardware

Hardware
component

Hardware
component

Remote
Access to
HAL

Figure 3.7: Hardware Abstraction Layer

32

provided by the attached module to an YARP network. The network_wrapper is
designed to interface with a specific module (or with different modules providing
the same features) and waits for requests on a specific yarp port name that the
network_wrapper registered on the name server. When a request is received by
the network_wrapper on that port, it checks whether the request is valid, performs
the requested action on the module and replies with the returned results from the
module, which may be data or just error status.

Using the example of platform locomotion as before, at startup time, the net-
work_wrapper will try to start the module. If it can not connect to motion con-
trollers, the startup is interrupted. Otherwise the network_wrapper registers a
yarp port name called /Dumbo/Locomotion on the name server. When some
other process wants to work with the module features, it just connects to that
port and sends requests with a command that specifies which feature of that mod-
ule wants to access. For instance, when the control application wants to specify
platform velocity, it sends the linear and angular velocity on a request with the
SET_VELOCITY command. The network_wrapper interprets this message and
calls the corresponding function of the module giving it those values. In the end,
the network_wrapper replies to that request with error status. The sequence dia-
gram of the Figure 3.8 illustrates this operation.

Yarp port name and others configurations (as module configurations) may be speci-
fied in a configuration file when the network_wrapper is started. When the module
configurations are described in this file, the network_wrapper provides it to the
module.

The remaining of the devices work in a similar way as described for locomotion
(movements of wheeled platform).

In the case of the manipulator, the module is responsible for management of all
direct communications with a server from the manipulator vendor and monitor
the status of the manipulator. This server interfaces with low level controllers
embedded in the manipulator through the USB-CAN adapter. Thismodule accepts
simple commands as position or velocity values for all joints (or only one joint).
It performs not only the request to the manipulator server, but also all error
verifications necessary to check whether the request was successful or not. This
result is replied to who performed the request. The network_wrapper registers an
yarp port name on the name server, waits for requests and replies to them until it
is interrupted and closed.

33

Control App Network_Wrapper Module Hardware

Init()

Initializations

Init/Loopback

OK/NOK

OK/NOK

register yarp port

set_locomotion(v,w)

move(v,w)

move(wl)

move(wr)

OK/NOK

OK/NOK

OK/NOK

OK/NOK

Finish

If OK

else

Figure 3.8: Locomotion device operation: the network_wrapper initializes the
locomotion module and waits for requests.

34

For the speech synthesis device, the network_wrapper accepts requests specifying
a string with a sentence to be synthesized be the module. This module uses text-
to-speech engine of SAPI, Speech Application Programming Interface (Microsoft,
2011), developed by Microsoft to allow the artificial production of human speech
within Windows Applications.

The digital compass network_wrapper accepts requests from the control applica-
tion, forwarding it to the compass module. The physical compass replies with
the current heading direction relatively to the north magnetic pole. The net-
work_wrapper sends this value back to control application.

For the laser range finder device, or obstacles device, the basic usage of the de-
vice works just like the ones previously described. When a GET_OBSTACLES
request arrives at the network_wrapper, it calls the corresponding feature of the
module. In turn, the module performs a data acquisition request of a single scan
to the hardware component. When the scan is finished, a vector of data and in-
formation is returned to the module, which decodes the data. It then gives to
the network_wrapper a simple vector with the distance to obstacles. This is the
synchronous mode of operation. This device allows also an asynchronous mode,
where the module will deliver to an yarp port a vector with the obstacles distances
each time a scan is performed by the laser range finder (in our case each 100ms, it
is the maximum rate achievable by the hardware of the laser range finder). As the
sequence diagram in Figure 3.9 suggests, an initial request configures the module
in a continuous operation mode. No subsequent requests of GET_OBSTACLES
needs to be performed. In this mode, the module registers a second yarp port
name for the device. An initial request to the network_wrapper with a destination
yarp port name is required. This configures the module in a continuous mode of
operation, which in turn configures the laser range finder in the same way. The
module waits asynchronously for data from the laser range finder. When it arrives,
the data is decoded and the distances vector is sent through the module yarp port
to the specified yarp port name in the configuration request. This operation mode
is finished when a STOP command is received by the network_wrapper, the des-
tination yarp port is unexpectedly closed, or the hardware component reports a
malfunction status.

This Hardware Abstraction Layer allows then that the user (in this case, the control
application) does not need to know robot structure details (e.g. distance between
wheels) or specific hardware communications protocols and control. For instance,

35

Destination yarp port Control App Network_Wrapper Module Hardware

Instance

Setup and Start Cont.

setup & start

MSMD

OK/NOK

ON/NOK

OK/NOK

Encoded Data

decode

Obstacles_Vector

Stop

Stop

QT

OK

OK/NOK

ON/NOK

Encoded Data

decode

Obstacles_Vector

Figure 3.9: Obstacles device asynchronous operation

36

Figure 3.10: Monitor Application

in the laser range finder device, the user only needs to send a simple request to the
network_wrapper and the module will take care of all complex message structure
that must be sent to the hardware and decode the reply message from sensor
containing the data. The reply message to control will be a simplified message
only with a vector of distances to the obstacles. The angle formed between the
robot heading direction and obstacle can be calculated by the control, see Control
Application in the following subsection.

3.2.2 High Level Software

Having all sensor and motor interface been described, we present here the rest of
developed software (monitor, control, viewer and auxiliary) to this project.

Monitor

The monitor application, Figure 3.10, was developed primarily as an application
to perform several tasks related to test and initialize most of the software and
hardware previously presented. Later it was extended to control, monitor and
update all that software from a remote computer.

37

Figure 3.11: Yarp Connections Manager Dialog Window

Below we describe each functionality of this monitor application:

Connections Manager: before any operation may be performed, it is necessary
to connect the monitor to the corresponding network_wrapper of the device
or control application. These connections are managed on another dialog,
Figure 3.11, that appears when the Connections button is pressed. On the
left side are listed devices (CT_Controller will be described later) that the
monitor is able to connect to. Selecting a device, upper right side (Options) is
automatically filled if a proper configuration file was created before startup
or loaded with the button Load Config. Status field describes the state of
the connection. When the button Connect/Disconnect is pressed, or a device
name is double clicked, it checks whether it is connected/disconnected and
connects/disconnects accordingly. When connection is not successful, Status
field shows a message with the error that cause the failure (e.g. “Yarp Name
Server is not running!” when no yarp name server is running under the
IP (Internet Protocol) address and port number specified). Each device’s
network_wrapper has an additional feature that allows any other application
to remotely shut it down. When the connections manager is connected to
the network_wrapper of a device, pressing the Remote Shutdown button will

38

send to the selected device a request with the SHUTDOWN command. The
network_wrapper will finish pending requests and close module afterwards.

Yarp Server group allows the management of yarp name server configuration
and start tasks. IP address and Port fields reflects actual configuration saved
in the operating system as a configuration file to the yarp name server.
These values are read at load time of the yarp connections manager and can
be changed to reflect the actual IP address of the machine where the yarp
name server is running and its root port number. Pressing Configure, those
value are written to the configuration file and becomes accessible to all other
processes trying to connect to the name server. Pressing the button Start
YarpServer3, an instance of the name server is created. However, sometimes
it is necessary to delete the database files generated by this tool (because e.g.
the port number or IP address has changed) to run it again. Delete Database
Files button does the work and warns the user when an error occurs.

At exit time of this dialog, it may be desirable to store the configurations of
actual session. For that, the user may select the Store Configuration checkbox
and choose the destination file. When OK button is pressed, this is verified
and configurations are stored in respective file.

Arm: After the connection with the arm network_wrapper, the arm may be moved
to desired positions, actual position may be viewed and reset may be per-
formed, Figure 3.10. When the arm is powered up, it is necessary to perform
a reset to each joint to allow the low level control of the joints calibrate itself.
Using the monitor, such operation is performed by selecting an approxima-
tion to the actual arm position in Actual Positions list and pressing the Reset
Arm button. A new dialog appears whether the user should confirm the re-
quested operation. It is a safety measure to the arm, since before reset the
arm cannot determine its own joints positions, so, a proper script should be
selected that will take into account current position of the arm and reset the
joints in a row that the reset movements of each joint will not make it collide
with Dumbo structure or components.

When an error occurs in some joint of the arm (e.g. joint velocity limits
achieved) it will stop working and it is necessary to correct the problem and
reset the errors (without power down the arm which would be expensive both
in time and actions since a physical reset would be required). The button
Reset Errors clears actual errors of the arm that may be cleared without a

39

physical reset.

As the name specifies, Stop button sends a request to the network_wrapper
with a STOP command to all joints (magnetic brakes are activated), followed
by a request with a command to release the brake of the last joint, since it
does not have a magnetic brake and is the motor who has to hold it still.
The Update button refreshes the joint angles values displayed.

Arm movements may also be performed using this interface: Specifying cur-
rent position from the Actual Positions list, destination position from the
Desired Positions and pressing the button Move To. Monitor application will
run a predefined script moving each joint at a time based on a pre-specified
sequence. If a position is selected from Actual Positions list and the Move
button is pressed instead, the arm will be moved to the new position spec-
ifying a velocity for each joint that will move all joints simultaneously and
complete the movement at the same time. The time duration of the task is
calculated based on the maximum velocity of the slowest joint. The third
approach to move the arm is using the text boxes of the joints angles to
specify the angle position for each joint. Pressing again Move button, the
arm will move to the specified position the same way as described before (to
when Move button is pressed).

In a subgroup of the arm, we find the gripper group. This allows the position
control of the gripper prismatic joint. Update button refreshes current posi-
tion of gripper joint. Open/Close buttons changes the value of the prismatic
joint to its maximum and minimum, respectively. Specifying a value in Move
Factor box and pressing the button Move, will move the joint to that abso-
lute position (the value is specified in millimeters). On the other hand, when
IncPos/DecPos is pressed, the prismatic joint will increment or decrement,
respectively, the current value of its position with the value specified in Move
Factor. Reset button will perform a physical reset on gripper prismatic joint
and clear the errors.

To complete arm group operation description, the subgroup Free Joint allows
the user to release the magnetic brake or motor brake of a specified joint.

Range Finder: The laser range finder group, Range Finder (obstacles), has a
simple interface. A Start and Stop button and a result file is all this group
performs. Despite the simple interface, below, the monitor application per-

40

Figure 3.12: Result file from Obstacles in Monitor: only an excerpt of the file is
presented here. This file has 682 values in each line, corresponding to the distance
to obstacles in each of the steps analyzed by the laser range finder.

Figure 3.13: Monitor Speech Synthesis Dropdown menu. New speech sentences
are presented in subsequent uses

forms the steps and actions mentioned and described by the Figure 3.9 and
during operation, received values are constantly stored in a file.

An excerpt of this file can be seen in Figure 3.12, and may be analyzed after
the Stop button is pressed.

Speech Synthesis: For speech synthesis group, a sentence may be selected from
the dropdown menu, see Figure 3.13, or written directly in the text box.
When the Speak button is pressed, a request with that sentence is sent to the
network_wrapper of the speech synthesis device. New messages written in
the text box are stored and presented in the dropdown menu for subsequent
uses.

File Upload: Another important feature added to the Monitor application is the
option of remotely sending the updated executables of installers to Dumbo
computer, see Figure 3.14. During the development of the software, sev-
eral modifications were performed to the different applications that run on
Dumbo computer. Those applications were developed in a desktop computer
and gathered together in several installation files to deploy in Dumbo (as in-
stallation files of Dumbo devices, Monitor, Task Controller, between others).

41

Monitor App Task Controller

Store Installers

Make Directory

OK/NOK

If necessary

Save File(s)

Figure 3.14: Send Installers files sequence diagram. Task Controller will create
the corresponding desired destination directory when it does not exist.

Using this feature, those installation files are easily sent to Dumbo in order to
install them afterwards. When File Upload|Installers is selected, an explorer
dialog is presented allowing the user to select the file(s) to be sent. After, a
new dialog is presented to the user so that he/she can select the destination
folder in the remote computer to store these files. As before, a dropdown
list is presented with the previously selected paths. If a different path is
inserted, it will also be stored for future uses. The file(s) is(are) then sent
to the remote computer. In the remote computer the auxiliary application
CT_Task_Controller is responsible for the completion of this task. This
auxiliary application is described in the following Cooperative Transporta-
tion description. In case the installers files are sent through this feature, it
is necessary an additional step in the remote computer: run the installer to
update current applications to the newer versions.

However, during the development of the control application for the coopera-
tive transportation task (written in C++) creating an installer, send it and
then run it in the remote computer is time expensive. To overcome this prob-
lem, a specific option was added to send only the executable of the control
application without the need to install it. File Upload|Cooptrans performs
the desired task. The Figure 3.15 shows the sequence of actions performed
upon such request. The directory and the name of the destination file may
be changed in a configuration file of task controller, see Figure 3.16.

Cooperative Transportation: As mentioned before, during the development of
an application as the Cooperative Transportation task it is inevitable that the
executable needs to be updated to solve some code errors and add features.
Moreover, after sending it to the target computer (Dumbo computer), it is
required to start and stop the application. Furthermore, when no update

42

Monitor App Task Controller

Store Installers

OK/NOK

Folder: CoopTrans_Work_Dir

File: CoopTrans_Process_Name

Save File

Figure 3.15: Send CoopTrans executable sequence diagram. Destination folder
and file name are specified in the configuration file of the Task Controller, see
Figure 3.16

Figure 3.16: Task Controller configuration file. Lines 1 to 6 define yarp port
names for the communication channels. Lines 6 and 7 define the working di-
rectory to run CoopTrans Application and the name of the executable, respec-
tively. Lines 1 and 2 defines prefix names for all yarp port names of Task Con-
troller and Cooperative Transportation, respectively. The string specified in line
3 will be appended to the one in line 2, forming /CoopTrans/CT_Controller,
which is the port name where Task Controller can connect to get status in-
formation and send stop requests. Likewise, line 4 and 5 will be appended
to line 1. /Task_Controller/CT_Controller_Client will be the yarp port name
that will connect to /CoopTrans/CT_Controller. An yarp port under the name
/Task_Controller/Controller will be registered in the name server and where Task
Controller will wait for requests.

43

Figure 3.17: Cooperative Transportation execution and configuration file manage-
ment group

to the executable is required, it may be important to be able to change the
parameters to the dynamics control architecture of the robot.

The Cooperative Transportation group, Figure 3.17, was developed in order to
suppress the needs described above. It allows Start/Stop and status update
of the remote application and to edit, load and store the configuration file.

The local copy (in host computer) of the configuration file may be selected
through the open document dialog or entering the path directly in the Config
File box. Store in Robot button sends the local copy of the configuration
file to the target computer overwriting the old one. Load from Robot button
reads the configuration file from the target computer and saves it in the host
computer. This file will not overwrite the one specified in the Config File
box. A save file dialog appears prompting for a destination folder and a file
name. Edit Config button opens the file selected in the Config File box for
editing in a text file editor.

The exchange of files between the two computers and the remote Start/Stop
of cooperative transportation task are possible because of 3 components:

- Task controller application, always running in the target computer;

- Cooperative Transportation application network_wrapper, running in
the target computer;

- Monitor Application network_wrapper, running in the host computer.

Figure 3.18 illustrates the organization of the specified components.

Task Controller (CT_Task_Controller) is always running in the target com-

44

Remote Interface

Robot

Task

Controller

Cooperative

Transportation

Monitor

Figure 3.18: Organization of components: Dumbo Computer runs Task Controller
process which, in turn, controls the execution of Cooperative Transportation and
files exchange. Monitor application and others run on the host computer and
connects to Task Controller via wired Ethernet or Wireless

puter. It manages the execution of Cooperative Transportation Task (Coop-
Trans) and interacts with monitor application for files exchange. Figure 3.19
shows a sequence diagram for Start/Stop of CoopTrans, update status and
Load/Store of configuration file.

When a Start request is performed, the task controller creates a new process
of CoopTrans and tries afterwards to connect to an yarp port registered by
this process (which by default is named /CoopTrans/CT_Controller) that
allows the task controller to get the status of execution and send a stop
request. There are times when the Cooperative Transportation application
takes longer time to connect to all devices of the Hardware Abstraction
Layer and, for that reason, the task controller will not be able to connect to
such yarp port immediately after the process was created. If the connection
fails, the task controller will try five more times timely spaced of 1 second
expecting that /CoopTrans/CT_Controller becomes ready during this time.
When no success is achieved after the five tries, the task controller will report
the error to the monitor application.

When a Stop is requested, the task controller will try to connect to /Coop-

45

Monitor App Task Controller CoopTrans App

start

CreateProcess(CoopTrans)

OK/NOK

update status

get status

current status

current status

stop

stop

closing

Finished: status

Store in Robot

Save FileOK/NOK

Load From Robot

Read FileConfig File

connect

Edit Config

Figure 3.19: Task Controller performs all remote requests from the Monitor in
the target computer. A typical session involves reading CoopTrans configuration
file, modifying it in the remote computer, send it back and start the application.
During execution, update of status gets running information (some error may
occurred in hardware) and finally in the end execution may be stopped.

46

Trans/CT_Controller (if it was not successful on Start request) and send a
stop command. If the CoopTrans application does not finish within 10 sec-
onds, or could not connect to such yarp port, the application will be aborted
and the error reported to monitor.

On a Update Status request, the task controller redirects the request also
to the Cooperative Transportation application through the previous channel
created between the two (yarp port named /CoopTrans/CT_Controller).
The task controller will reply with its operation status and Cooperative
Transportation status, which may be in error state, because of some device
failure, for instance.

The sequence diagram of the Figure 3.19 also describes the sequence of ac-
tions performed when a store or load file operation is requested. These
operations only involve the monitor application and task controller. The
Cooperative Transportation application will take into account the new con-
figuration file when it is restarted.

Control Application

The development of the control application (Cooperative Transportation applica-
tion) is the main reason to the development of all the software described. It is the
high level control of the hardware under the Hardware Abstraction Layer. This
application was developed to implement and test the robot’s dynamical control
architecture, which is presented in Chapter 4. This application is divided in two
main tasks:

- Control loop, where all calculus related to robot’s dynamical architecture are
performed;

- Auxiliary thread, where interface with Hardware Abstraction Layer is per-
formed. This thread is necessary to deal with the asynchronous characteristic
of the obstacles device. This task is hidden inside a C++ class named Robot.

The algorithm of the control loop is presented in Algorithm 1. It is a high level
control, since all low level part is realized by the auxiliary software, leaving to the
robot’s dynamical control architecture developer an abstract way to interface with
the robot.

47

Algorithm 1: Control Loop of Cooperative Transportation
1 Initialize variables;
2 Connect to Hardware Abstraction Layer;
3 Configure obstacles;
4 while no stop command received do
5 Get input from sensors;
6 if no error received from input then
7 Compute of heading direction dynamics;
8 Compute of path velocity dynamics;
9 Send new values to manipulator;

10 Send new values to platform locomotion;
11 if speech sentence to synthesize then
12 Send speech sentence;
13 end
14 Save input from sensors;
15 Save dynamics results;
16 Provide to Matlab_Viewer;
17 else
18 Show error: “Device returned error”;
19 Stop execution until error is fixed;
20 end
21 Update cycle time;
22 end
23 Disconnect from Hardware Abstraction Layer;
24 Finish;

48

The C++ class Robot assumes all the required tasks related to management of
connections to all the devices that compose the Hardware Abstraction Layer. Af-
ter initializations, all the work that the control have to do, to get for example
the obstacles, is call robot.get_obstacles(&obstacles_vect), supposing that
a class Robot has been instantiated with the name robot. obstacles_vect is a
vector where the distance to obstacles will be stored, so, obstacles_vect[i]
is the distance to the obstacle in sector i. All the other devices work in a
similar way, setting new values to manipulator joints positions is as simple as
call robot.set_manip_pos(joints_pos), or defining new values to joints veloc-
ity, robot.set_manip_vel(joints_vel), where joints_pos and joints_vel are
vectors with joints positions and velocities, respectively. To verbal communication,
a call to robot.speak(speech_sentence) will send a message to the speech syn-
thesis device resulting in that message to be spoken by the robot. When new values
to robot navigation velocity should be sent, a call to robot.set_locomotion(v,w)
will send the linear velocity v and angular velocity w to the robot locomotion de-
vice.

Except for obstacles device, all the tasks related to get data from sensors and
setting new values to actuators are straightforward, since all the required work
to do in Robot class is to compose the corresponding request and check whether
errors occurred during the operation.

The complex part of obstacles device is its asynchronous operation mode to get the
maximum achievable performance in operation and the processing task required
to be performed afterwards.

Usually, the control does not need to handle obstacles with the discretization that
is achieved by the laser range finder (0.35◦), Figure 3.20(a). The laser range finder
can be configured to return the data in clusters 1 , and this way the control may
divide the full range in sectors with a wider aperture than the full discretization
of the range finder, see Figure 3.20(b).

Despite this feature of the laser range finder, it can not be used by the control,
since, as we can see in Figure 3.21 , two support columns of robot structure are in
the range of the laser scan. The range of the laser scan can be configured, but only
the start point and end point. The range must then be continuous, not allowing a

1Division of the data in clusters is a feature of the laser range finder that permits to specify
through a cluster count value the number of adjacent steps that can be merged into single data.
When cluster count is more than 1, step having minimum measurement value in the cluster will
be the output data.

49

(a) (b)

Figure 3.20: Full discretization (a) and in clusters (b), with cluster count 99 This
data was gathered from the same real world scenario, although the laser was not
in the robot structure. When no distance to obstacles is presented in a sector,
means that, if there is an obstacle, it is outside the range of the laser.

Figure 3.21: Two structure columns are in the range of the laser scan. A division
in clusters be the laser range finder would return always obstacles to the left and
to the right of the robot.

50

Figure 3.22: Measurement parameters

Table 3.4: Measurements Parameters for Sensor URG04-LX

Description Value
Step 0 First Measurement point 0
Step A Initial Measurement Step of Detection Range 44
Step B Sensor Front Step 384
Step C End Point of Detection Range 725
Step D Last Measurement Point 768
E Detection Range (◦) 239.77
F Slit Division 1024

specification of a set of steps to be ignored. If data were collected in clusters, the
control would always get obstacles to the left and to the right of robot.

To overcome those two problems, a thread inside the class of the Robot was imple-
mented. It asynchronously waits for data from the laser range finder device. When
data is received, the two set of steps that wrongly define obstacles are excluded
from the measurements 2 (defining its distance to maximum) and a division in
sectors is performed.

Both the two set of steps that should be ignored and the number of sectors that the
measurements should be divided into are defined by the control application before
a call to robot.start_obstacles() is performed. Those values are read from
the configuration file of the application. Others parameters as Step A, Step B,
Step C, Slit Division (see Figure 3.22 and Table 3.4) and desired angular range
of detection must also be known. The desired angular range of detection must be

2A simpler approach verifying if the distance to the obstacle is smaller that the radius of
the robot could not be implemented. From experience, the measured distance by the laser range
finder to objects with black colors (which is the color of the robot structure) is not always accurate
as expected. If the measured distance was bigger than the robot radius, it would influence the
control strongly and constantly.

51

specified in same configuration file of ignore steps and number of sectors. The other
parameters can be obtained from the device because those information parameters
are read directly from the hardware component or from a configuration file of the
device.

Algorithm 2 shows the steps that are performed and required information to con-
figure the correct acquisition of obstacles. Considering the desired angular

Algorithm 2: Configure Obstacles Acquisition
input from control: Detection Range, α; Sectors Number, n
input from device : Step A, sa; Step B, sb; Step C, sc; Slit Division, sd
output to control : Effective Detection Range, χ; Angular Difference

Between Sectors, ∆θ
output to device : Start Step, ss; End Step, es;

1 ss← sb− α
2
sd
2π + 1;

2 es← 2 · sb− ss+ 1;
3 χ← (es− ss+ 1)2π

sd
;

4 ∆θ ← χ
n
;

5 ns← es− ss+ 1;
6 for i← 0 to i ≤ n do
7 obstacles_lim[i] = −χ

2 + i ·∆θ;
8 end
9 for i← 0 to i < ns do

10 found← false;
11 β ← −χ

2 + ss−a+i
s

;
12 while sector not found do
13 if sectors_lim[i] > β then
14 found← true
15 else
16 increment sector
17 end
18 end
19 sector_pos_[i]← sector

20 end
21 setup(ss,es,1);

range of detection, a start step (start_step, ss) and an end step (end_step,
es) are determined, line 1 and 2. To gather the steps in different sectors, a vector
(sector_pos_) with a size of the number of steps (ns) is filled with the sector
number where each step should be saved. Finally, a request is sent to the de-
vice with the start_step, end_step and a cluster count of 1, since we want the
maximum discretization from the laser range finder.

52

With the output to control from the Algorithm 2, the angle between the robot
heading direction and each sector, θi, can be determined as Algorithm 3 suggests.
Where φ is robot heading direction (at any instant relatively to an inertial frame

Algorithm 3: Configure Obstacles Acquisition
input : Effective Detection Range, χ; Sectors Number, n, Angular

Difference Between Sectors, ∆θ
output: Angular direction of sectors θi, (Ψi − φ)

1 for i← 0 to i < n do
2 (Ψi − φ) = −χ

2 + ∆θ
2 + i ·∆θ;

3 end

of reference) and Ψi is the angle between the inertial frame of reference and the
sector i.

As described before, after a call to setup_obstacles, calling start_obstacles a
yarp port for reception of data is registered. The name of this yarp port is sent
to the obstacles device and a new thread is created. Once the thread is ready,
a start_asynchronous request is sent to the network_wrapper of the laser range
finder device. This thread executes the code represented by the Algorithm 4.
After some initializations, this thread waits for data from the obstacles device.

Algorithm 4: Thread Read Obstacles
input : Yarp Port Name, port_name
output: vector of distance to obstacles, obstacles

1 port← register(port_name);
2 send start_asynchronous;
3 while not stop reading do
4 data← port.read();
5 mutex.acquire();
6 obstacles← {max_distance}n×1;
7 for index← 0 to index < data.length() do
8 if (index+ ss) ∈ Ignore_Steps then
9 data[index].value← max_distance;

10 end
11 if obstacles[sector_pos_[index]] > data[index].distance then
12 obstacles[sector_pos_[index]]← data[index].distance
13 end
14 end
15 mutex.release();
16 end

53

When it arrives, for each step present in the received vector, it is verified if it
belongs to the ignore steps sets, line 8. If it does, the distance value is overwritten
by the maximum_distance specified by the control. This result is then saved in
the corresponding sector if its value is smaller than the one already there.

This thread works asynchronously, however, the control application can always call
robot.get_obstacles() and the most recent set of obstacles distances received
will be returned, as Algorithm 5 shows.

Algorithm 5: Control: get obstacles
output: vector of distances to obstacles, obstacles_vect

1 mutex.acquire();
2 for index← 0 to index < obstacles.length() do
3 obstacles_vect[i]← obstacles[i]
4 end
5 mutex.release();

Despite the straightforward algorithms presented in Algorithm 2 and Algorithm 4,
the real implementation has several errors verification. For instance, the desired
angular range of detection may be to wide or to close to a specific laser range
finder. When data is received, error verification is performed to check if the device
encountered an error and stopped working.

Matlab Viewer

AMATLAB GUI was developed to view the dynamics of the robot control architec-
ture presented in Chapter 4 while tests are performed with the robot. Figure 3.23
shows a snapshot of the developed GUI which was named Matlab_Viewer. This
GUI shows graphically the different contributions from the sensory input to the
resulting vector field. The resulting vector field and velocity dynamics are also
drawn. The GUI is able to show the distance to obstacles in a table. To the
completion of this task, a communication channel was created between the GUI
and the control. When the control starts, a network_wrapper is created (named
wrapper_viewer), registering a /CoopTrans/Matlab_Viewer (default name) yarp
port name in the name server. As soon as the GUI is started, it will query for
such yarp port name and connect to it if available. A request is then submitted
demanding the parameters that are static for a session (e.g. number of obsta-
cles, robot radius, between others). After this initialization, subsequent requests

54

Figure 3.23: Matlab_Viewer

are performed to obtain the sensory information gathered from the Hardware Ab-
straction Layer that is relevant to perform the calculations. Despite the objective
of the Matlab_Viewer is visualization, it has to perform more calculations than
the control. In each computational cycle of the control (fetch, compute, update) it
only calculates the dynamics for the current heading direction of the robot, while
the GUI perform the calculations for the entire polar circle. Only actuation (up-
date) is not performed by the viewer. The Figure 3.24 shows a typical sequence
diagram of the communication between the control and the viewer.

When tests were performed on the robot, the Matlab_Viewer GUI was running
on a computer connected by wireless to the robot. The high computational cost
of the GUI (comparing to the control application is about 3 times higher) and
the necessary time to complete a data request, lead us to implement the exchange
of information between the Matlab_Viewer and the CoopTrans application in an
asynchronous mode. The wrapper_viewer provides this operation mode. In each
cycle time of the control loop a set of data is provided to the wrapper_viewer,
which is running is a different thread. The next set of data will override the last
one if the Matlab_Viewer haven’t read it yet. This allows that, as soon as the
Matlab_Viewer performs a new request (even if the last one was a long time ago)
the most recent data will be replied. If, somehow, the Matlab_Viewer is faster
in calculations than the control and the travel time of the data is small enough
such that the GUI performs a new request to wrapper_viewer without the control

55

Matlab Viewer Wrapper_Viewer CoopTrans (control)

Initializations

Instance Wrapper ViewerSet Params

Set DataInit

Get Params

ret: params

Set Data

Set Data

Get Data

ret: Data
Set Data

Set Data

Set Data

Set DataGet Data

ret: Data

End Init

Figure 3.24: Matlab_Viewer can only be started after Cooptrans application. Be-
cause of it’s high computational cost and travel time for data requests, CoopTrans
sets new data much faster than the Matlab_Viewer reads it.

update the data (see Figure 3.25), wrapper_viewer will not reply to the GUI until
the control sets new data or an error occur.

The Matlab_Viewer can be started and stopped any time during an execution of
the control and wrapper_viewer. On the other hand, if the control is stopped,
Matlab_Viewer will also stop (it recognizes that an error occurred) and has to be
restarted after CoopTrans is running again.

3.3 Kinematics

Dumbo navigation in the environment is accomplished by the two motorized wheels
and the two caster wheels. Since caster wheels are passive, for robot navigation, it
is necessary to generate two control signals: one for angular velocity of left wheel,
wwheel,L and another to the right, wwheel,R.

The platform may be controlled by setting continuous values to it’s linear velocity,
v, or path velocity, and angular velocity, w, see Figure 3.26.

56

Matlab Viewer Wrapper_Viewer CoopTrans (control)

Set Data

Set Data

Get Data

ret: Data

Get Data

ret: Data

wait_control

Figure 3.25: When the developed Matlab GUI is faster than the control, wrap-
per_viewer will make it wait for control.

wwheel,L

wwheel,R

v

w

Figure 3.26: Robot Kinematics

57

Using the equations (3.1) and (3.2),

wwheel,L = 1
Rwheel

(v − Dwheels

2 w) (3.1)

wwheel,R = 1
Rwheel

(v + Dwheels

2 w) (3.2)

the angular velocity for each motorized wheel can be determined. Where Rwheel is
the wheel’s radius and Dwheels is the distance between the driving wheels.

3.4 Conclusion

In this chapter we have presented the hardware and software modules of the mobile
manipulator that was built in the scope of the dissertation work.

Next we present the theoretical framework that was used to design the robot’s
dynamic control architecture.

58

Chapter 4

A Dynamical Architecture for
Control and Coordination of the
Mobile Manipulator

The task of the mobile manipulator is to transport an object in cooperation with
a human. In this chapter we describe the strategy adopted to perform such task.
Specifically, we adopt a leader-follower strategy where the leader (human) goes
from an initial position to a desired goal position. The follower (robot) should
help supporting the object and trail the leader agent (i.e. the human), but how
to change it’s navigation to avoid obstacles and how to coordinate itself with the
human partner is left to the followers decision.

4.1 Strategy Adopted

The human operator and the robot must together transport a long object in an
unstructured and unknown environment. The object must not fall while it is
being transported to the desired goal position. A human-follower motion control
strategy was adopted. The human assumes the leadership of the task, since it is
the only agent endowed with capabilities to understand the goal of the task. The
robot must be able to support the leader for smooth and safe execution of the task
goal while avoiding static and dynamic obstacles.

Unlike most leader-follower scenarios, the leader does not provide to the follower

59

Ψtar,R

Figure 4.1: The last joint of the arm is kept rotational free

precise directions in terms of what to do, it is assumed that the robot is au-
tonomous. In other words, the robot is able to acquire the required information to
complete the task from its own sensors and has a certain degree of freedom to move
as long as it does not interfere with the accomplishment of the goal or its own lim-
itations. For instance, when the two partners are transporting a large object, the
user steers to the goal position, avoiding obstacles. The robot then trails the user
while supporting the object, but the robot must gather from the environment the
necessary information to keep the movement of the object, avoiding obstacles and
alert the human when an intended movement (e.g. pass between two obstacles) is
not feasible to be performed by the robot.

As a first approach, and to make the execution of the project feasible in the
stipulated time, the manipulator movements, while the task is being performed,
were not considered. When the task is started, the robot moves it’s arm to a prior
selected posture for transportation, which is maintained until the end of the task.
This (sub)optimal posture was selected to comply with some requisites:

• Allow free rotation of the wrist joint parallel to the ground, see Figures 4.1
and 4.2;

• End-Effector height enough such that the transportation of the object is
comfortable to the human without requiring him to curve;

• Avoid joint limits and singularities.

60

h

Ψtar,R

Figure 4.2: Transportation task posture for the mobile manipulator. The height,
h, is about 0.72.

Table 4.1: Transportation task posture for mobile manipulator

Joint No. Angle distance to joint limit
◦ ◦

1 60 105
2 0 15
3 90 75
4 150 46
5 0 165
6 90 30
7 0 165

Taking into account the height and orientation of the end-effector (in order to
be able to grasp the object), joints limits and singularities, the posture shown in
Figure 4.2 and Table 4.1 was selected.

This posture allows the human to steer in different directions and enable the
robot to acquire the angle between the robot heading direction and human, see
Figure 4.3. This angle is read from the position encoder of the free rotational
joint, whose zero is aligned with the robot heading direction when the arm is in
this posture.

As can be seen in Figure 4.2, the end-effector height above the floor is about 0.72m.
It was selected based on the height of the human with whom the robot is working
with.

The robot agent detects a moment signal from the force/moment sensor. Figure 4.4
illustrates the measure read by the sensor and used to generate the robot navigation

61

xr

φ = 0
Robot

Ψtar,R

Human grasp point

Object to transport

Figure 4.3: Human as Target

Mx

Figure 4.4: Moment Signal from force/moment sensor

path velocity.

The robot uses both the angle of human direction and this moment information,
as non-verbal communication, to generate it’s motion behavior to collaborate in
the execution of the transportation task.

As previously described, the robot is able to sense the environment also through a
laser range finder device. This device is used by the robot to acquire the obstacles
that lies in it’s navigation path and avoid them.

During the cooperative transportation task, it may occur several situations where
an intended movement is not feasible to be performed by the robot. For instance,
a passage between two obstacles, as can be seen in Figure 4.5, may be too narrow
to the robot to pass between them. To avoid that the robot stays there indef-
initely until the human partner realizes by himself the situation, the robot was
endowed with a verbal communication mechanism. The robot is able to detect
this occurrence and inform the human of it’s own difficulties, see section 4.2.3.
Others situations such as

a) when the human moves too fast and the robot is near it’s maximum velocity

62

0.75m

1.2m

Figure 4.5: Passage too narrow for safety movements between obstacles

Robot

Ψtar,R

Rotational
limit of
joint

Human
grasp
point

Do not go
so much to
the right!

(a)

Robot

Ψtar,R

Human
grasp
point

I have to go to
the left, please
push the object

w

(b)

Figure 4.6: Problematic situations where verbal communication may enhance the
execution of the task

or force/moment sensor limits;

b) the human turns too much to one side that the free rotational joint is near
it’s maximum or minimum position, see Figure 4.6a

c) because the vertical axis of rotation of the robot is not coincident (though
parallel) with the vertical axis of rotation of free rotational joint, if the robot
rotates too quickly to the right or to the left, it would induce the human to
let the object to fall, since the human would feel a huge push or pull and not
be prepared to such movement, see Figure 4.6b

can be detected by the robot and the human is alerted for such situations.

63

4.2 System design

The system developed here endows the mobile manipulator with a navigation
functionality for object transportation in cooperation with a human in indoor
environments, yet unstructured and changing.

As described in the previous section, only platform movements are considered in
this project. To such movements, and following the methodology of the dynami-
cal systems approach outlined in Chapter 2, the behavioral variables must to be
defined first. Platform navigation can be expressed in terms of robot’s angular
velocity w and translational velocity v. Behavior constraints are usually defined
by directions of objects (target or obstacles) relative to a world fixed frame of
reference and restrictions on path velocity. Defining

~x =
 φ

v

 (4.1)

as the behavioral variables allows a transparent method to derive the control vari-
ables for platform locomotion:

d~x

dt
=
 φ̇

v̇

 (4.2)

The angular velocity w may be obtained directly from equation (4.2), w = φ̇, and
the translational velocity v obtained from integrating the acceleration v̇ for each
timestep.

From equations (2.1) and (4.2), we can obtain:
 φ̇

v̇

 = ~f (~x, parameters) =
 f (φ, parameters)
g (v, parameters)

 (4.3)

If we keep the dynamics of φ and v independent of each other, the mathemati-
cal analysis of the dynamical systems will be simplified to two one-dimensional
systems. Thus, the analysis of fixed-points and their stability will be simplified.

In the following subsections two dynamical systems are designed: one for head-
ing direction and another for path velocity, respectively. In these subsections,
f (φ, parameters) and g (v, parameters) will be specified as f (φ), and g (φ), re-

64

spectively.

4.2.1 The dynamics of heading direction

Robot navigation in the environment may be constrained by targets and obstacles
that define desired and to be avoided orientations for robot heading direction, see
Figure 4.7. These task constraints define force-lets for the resultant vector field.
Target direction (φ = Ψtar) define an attractive force-let, while obstacles directions
(φ = Ψobs) define a repulsive force-let to the heading direction dynamical system.
These angles are measured from a fixed world reference axis, so the contributions
of the target and obstacles to this dynamical system does not depend on current
robot heading direction, see Figure 4.8.

Regardless of the current heading direction of robot, the dynamical system will
always tend to an asymptotically stable state (unless it is in an unstable state
and no noise exist), thus leading the current heading direction of the robot to be
always in or near a resulting attractor of the dynamics. As the robot moves (with
translational velocity) the directions of the target and obstacles changes. This
leads to a shift in the resulting attractor, pulling the heading direction along.

Target Acquisition

The behavior Target Acquisition is expected to align the robot’s heading direction
with the direction Ψtar of the target in the environment.

As previously described in Chapter 3, the last joint of the robotic arm is kept
rotational free and it has an encoder attached to it. As can be seen if Figure 4.9
target direction relative to robot heading direction is obtained from this encoder.
To get an angle relative to the world fixed axis reference, we need to sum Ψtar,R

to φ (current heading direction):

Ψtar = φ+ Ψtar,R (4.4)

current heading direction is given by the digital compass device available in robot,
which is referenced to the fixed world reference axis.

The target acquisition task is specified in the vector-field erecting an attractor at
the orientation Ψtar and strenght λtar. Regardless of current robot heading direc-

65

yw

xw

xr

Obstacle

φ

Ψobs

Ψtar

Robot

Object to transport

Ψtar

Arm

Figure 4.7: Target acquisition and obstacle avoidance task constraints. Ψobs is
the direction at which the obstacles lies (to be avoided direction) from the current
position of robot. Ψtar is the desired (target) direction for robot heading direction.
This value is read from the arm last joint’s encoder. As can be seen, this angle is
the same in robot’s center since the reference axis are kept parallel. The direction
of xr axis is kept parallel to a xw during robot movements. This means that if the
robot rotates about itself, the xr axis will be parallel to xw and so Ψobs and Ψtar

will be constant. If robot moves with translational velocity, xr will move with it,
but parallel to xw, and Ψobs and Ψtar will change accordingly

66

φ

dφ
dt

0 π 2π
Ψobs

(a)

φ

dφ
dt

0 π 2π
Ψtar

(b)

φ

dφ
dt

0 π 2π
Resultant attractors

(c)

φ

dφ
dt

0 π 2π
Ψobs

(d)

φ

dφ
dt

0 π 2π
Ψtar

(e)

φ

dφ
dt

0 π 2π
Resultant attractors

(f)

Figure 4.8: Resultant Attractors, (c) and (f), from the superposition of the repul-
sive force-let, (a) and (d) from obstacle constraint and attractive force-let, (b) and
(e) due to target constraint. (a) to (c) are vector fields for Figure 4.7 for any robot
heading direction. (d) to (f) are vector fields when target and obstacles are kept
constant in the world and robot changes its position (shifting to the right).

xr

φ

Ψtar

Robot

Ψtar,R

Object to transport

Figure 4.9: Relative angle between human and robot

67

φ

ftar

0 π 2π

Ψtar

slope −λtar

Figure 4.10: Dynamics of heading direction for target acquisition behavior. The
slope −λtar at the fixed-point φ̇ = 0 defines an attractor at the direction Ψtar

tion, it is desired that the robot’s behavior is to orientate towards this direction.
Thus, this contribution should exhibit an attractive force over the entire range of
heading direction, which is the full polar circle (0 to 2π). The mathematical form

dφ

dt
= ftar (φ) = −λtar sin (φ−Ψtar) (4.5)

erects an attractor (asymptotically stable state) at Ψtar direction and an repeller
(unstable state) at 2π−Ψtar. A plot of this dynamical system in phase space can
be seen in Figure 4.10. If we analyze equation (4.4) and the argument of the sin
function in equation (4.5) we can see that this dynamical system does not depend
on the current heading direction φ of robot, since

φ−Ψtar = φ− (φ+ Ψtar,R)
= −Ψtar,R

(4.6)

where Ψtar,R is acquired directly from the encoder of the free rotational joint. Since
φ cancels out, target orientation does not need to be known relative to an external
fixed world frame of reference and it is not influenced by calibration errors of
digital compass.

Obstacle Avoidance

The obstacle avoidance behavior is expected to steer the robot away from obstacles
that lie in robot navigation path. Dumbo robot is equipped with a laser range
finder and software was developed which allows the selection of the number of
sectors desired and the range detection. Each sector gets a fixed direction, θi

68

xr

Obstacle

φ

Ψi

Robot
Rrobot

θi
di

∆θ

Figure 4.11: Parameters of obstacle avoidance behavior. Obstacles in robot nav-
igation path are gathered in n sectors. Each sector i is at an angle θi relative
to robot heading direction φ and measures a distance di to objects in direction
Ψi = φ− θi relative to a fixed world reference axis. The angular resolution is ∆θ
and the robot’s radius is Rrobot

relative to the robot heading direction and an Ψi = φ + θi relative to the world
reference axis. i denotes the number of the sector, ranging from i = 1 . . . n, where
n is the selected number of sectors, see Figure 4.11. For each sector, the dynamics
should erect a repeller at the direction Ψi, see Figure 4.12:

fobs,i = λobs,i (φ−Ψi) exp
[
− (φ−Ψi)2

2σ2
i

]
, i = 1 . . . n

= λobs,i (−θi) exp
[
− (−θi)2

2σ2
i

]
, i = 1 . . . n

(4.7)

As in equation (4.5) for target acquisition behavior, also here only the relative

φ

dφ
dt

0 π 2π

Ψi

slope λi

range, σi

Figure 4.12: Dynamics of heading direction for single obstacle. The slope λobs,i at
the fixed point φ̇ = 0 defines a repeller at the obstacle direction Ψi

69

Robot

∆θ

di

2σi

Rrobot

(a)
Robot

∆θ

di
2σi

Rrobot

(b)

Figure 4.13: The angular range σi of repulsive force-let is a function of angular
range of sector, ∆θ, and a safety margin on each side of obstacle

orientation θi of each sector i to robot’s heading direction φ enters into the dy-
namics of heading direction. In equation (4.7), λobs,i is the strength of repulsion
and it’s magnitude is an exponential function of the distance to the obstacles in
direction Ψi:

λobs,i = β1 exp
[
− di
β2

]
(4.8)

The exponential makes that the heading direction to be repelled strongly from near
obstacles and weakly from far obstacles with a rate of decay with the increasing
distance β2. The parameter β1 controls the maximum repulsion strength.

Opposite to target acquisition, the range over which the heading direction should
be repelled is not the full circle. The range σi is a function of the distance to
obstacle di, the angular range of each sector ∆θ and robot radius:

σi = arctan
[
tan

(
∆θ
2

)
+ Rrobot

di

]
(4.9)

Within the angular range ∆θ, the sector does not define the exact direction of
the object, thus, to avoid collisions, it is assumed that the object covers the entire
angular range ∆θ. An angular safety margin is added to ensure a passage next
to the obstacle without contact, see Figure 4.13. The final avoidance dynamics is

70

φ

Ψ4
Ψ3

Ψ2

xr

(a) Three different contributions to resultant
vector field

φ

dφ
dt

0 π 2π
Ψ4Ψ3Ψ2

Resultant Repeller

(b) When contributions are summed, a resul-
tant repeller is erected which angular range
covers the three contributions

Figure 4.14: Dynamics of heading direction for obstacle avoidance behavior. The
sum of all contributions may have a single resultant repulsive force-let as in (a)
and (b) or, if the obstacles are far enough, multiple repellers for different Ψi.

obtained from the sum of the contribution of each sensor i = 1 . . . n:

dφ

dt
= Fobs (φ) =

n∑
i=1

fobs,i (φ) (4.10)

The Figure 4.14 illustrate the obstacle avoidance heading dynamics for a case
where three sectors detect an object. Despite the dynamical contribution of each
sector erects a repulsive force-let at Ψ2 Ψ3 Ψ4, the resultant dynamics has a single
repeller which covers the angular range of those separate contributions. This result
leads the robot to avoid the three obstacles as if there was a single one occupying
the same space.

Integrating the two behaviors

The overt behavior of the robot is obtained from the following dynamical system:

dφ

dt
= frobot (φ) = −λtar sin (φ−Ψtar,obs) + fstoch (4.11)

Where Ψtar,obs is the desired direction for the robot. Ψtar,obs is given by summing

71

Fobs(φ)

Ψturn

0
φ̇supφ̇inf

φmax

Figure 4.15: Sigmoid function for obstacles contribution

the target direction, Ψtar, and an angle function of obstacles contributions:

Ψtar,obs = Ψtar + Ψturn (4.12)

The angular value Ψturn is obtained from a sigmoid function that rises smoothly
from an inferior limit, φ̇inf , to a superior limit, φ̇sup, between a symmetric threshold
value, φmax, see Figure 4.15:

Ψturn = σφ̇inf ,φ̇sup
(Fobs (φ))

=

−φmax if Fobs (φ) ≤ φ̇inf

−φmax cos
(
π
Fobs(φ)−φ̇inf

φ̇sup−φ̇inf

)
if φ̇inf < Fobs (φ) < φ̇sup

φmax if Fobs (φ) ≥ φ̇sup

(4.13)

φ̇inf , φ̇sup and φmax are design parameters.

A stochastic force is added to ensure that the robot is able to escape from unstable
fixed points (repellers):

fstoch =
√
Qξn (4.14)

where ξn is Gaussian white noise of unit variance, so that Q is the effective variance
of force.

The sigmoid function and the integration of obstacles contribution in target dy-
namics allows to the control to take into account the human direction even in
presence of obstacles.

If a simpler integration of the two behaviors such as

dφ

dt
= Fobs (φ) + ftar (φ) + fstoch (4.15)

would be used, when obstacles are near to the robot, very strong repellers would
be erected and the target contribution would be easily superseded by obstacles

72

xr

φ

Ψtar

Robot

Obstacle

Ψ3

Object to transport

(a)

φ

dφ
dt

0 π 2π

Ψtar
Ψ3

Ψtar,obs

Heading direction

(b)

Figure 4.16: Integration of Target and Obstacles behaviors.

contribution, leading the robot to avoid the obstacles without taking into account
the human direction in its behavior.

Figure 4.16 illustrates the integration of the two behaviors. The sum of obsta-
cles contributions, dashed red line, erect two different repulsive force-let. Target
acquisition dynamics contribution is represented by the dotted green line. The re-
sultant non-linear dynamical system, solid blue line, has the same shape of target
acquisition, but the attractor is shifted by the obstacles contribution. The thiner
solid blue line is the resultant heading direction dynamics for equation (4.15).

73

4.2.2 The dynamics of path velocity

To completely define the time courses of robot behavioral variables, a dynamical
system for path velocity should be specified. Every movement of the robot leads
to a shift in attractors and repellers, since the sensory information changes with
the moving robot. This shift also occurs when the object (target or obstacles) are
moved. Despite this movements, the system must remain stable. In other words,
the robot’s heading direction should be in or near an attractor at all times (Bicho,
2000). Such task may be accomplished by controlling the path velocity v of the
mobile platform:

dv

dt
= g (v) = −cobs (v − vobs)− ctar (v − vtar) (4.16)

The desired velocity is controlled such that the presence of obstacles influences
the velocity contribution of the target. ci (i = tar or obs) indicates the strength
of each contribution. A potential function indicates the presence of obstacles
contributions:

U (φ) =
n∑
i=1

(
λobs,iσ

2
i exp

[
−(φ−Ψi)2

2σ2
i

]
− λobs,iσ

2
i√

e

)
(4.17)

When U (φ) is negative, no obstacles were detected, or the robot heading direction
is outside the repulsion zone. The robot must then navigate with a velocity value
given by the force/moment sensor, cobs = 0 and ctar > 0. A positive value of
U (φ) indicates that the robot heading direction is inside a repulsion zone, and the
robot must take into account the presence of obstacles. Now cobs > 0 and ctar = 0
is required and path velocity (vobs) is then controlled by the minimum between
the velocity to follow the human (proportional to force/moment readings) and a
velocity function of the distance to obstacles:

vobs = min
(
dmin
T2c,obs

, vtar

)
(4.18)

where dmin is the distance to the nearest obstacle and T2c,obs is a parameter defin-
ing the time to contact with the obstacle. The velocity dynamics presented in
equation (4.16) guarantees smooth transitions between the velocities.

cobs and ctar are controlled by a relaxation rate parameter, cv,obs and cv,tar respec-

74

φ

α(φ)

0 π 2π

Ψobs

1
2

−1
2

Figure 4.17: Sigmoid threshold function of potential U (φ). The dashed red line is a
repulsive force-let, fobs(φ), which defines a repeller at Ψobs direction. The potential
function, U (φ), doted cyan line, indicates the presence of obstacles. A sigmoid
threshold function, α (φ), solid magenta line transforms the levels of the potential
function into a range from −1/2 to 1/2

tively, and a sigmoid threshold function

α (φ) = arctan [cU (φ)] /π (4.19)

which transforms the levels of the potential function to value ranging from −1/2
and 1/2 (see Figure 4.17). This result is feed to the equations:

cobs = cv,obs (1/2 + α (φ)) (4.20)

ctar = cv,tar (1/2− α (φ)) (4.21)

where the strengths to both velocity contributions are obtained. To obtain a sharp
transition in velocity behavior, a large value c should be used in equation (4.19).
The following hierarchy of relaxation rates ensures that the system relaxes to the
attractors and that obstacles avoidance has precedence over the target contribu-
tion:

λtar << cv,tar λobs << cv,obs λtar << λobs (4.22)

4.2.3 Speech

The dynamical systems presented in previous sections endows the robot with an
autonomous control for a safe navigation in a cooperative object transportation
task context. Nevertheless, certain movements required by the human can not be
performed by the robot. When the human enters in a passage, the robot may

75

not be able to follow him if the passage is too narrow for a safe navigation. The
previously proposed architecture does not allow the robot to follow the human
in such situation, since the path velocity gets low enough to the robot not move
with translational velocity and heading direction dynamics tries to align the robot
heading direction with the passage.

This results in a dead end, since no further movement is made by the robot. To
avoid such situation, the robot was endowed with a speech synthesis mechanism
to allow the robot to alert the human.

Such situations are detected by a set of conditions applied to the results of the
dynamical systems.

When the robot gets trapped in a too narrow passage situation, the following
conditions are verified:

narrow_passage = abs (α (φ)) > 0 ∧ abs(φ̇) < φ̇min (4.23)

where α (φ) is the sigmoidal threshold function, see equation (4.19), φ̇ is the cur-
rent robot angular velocity and φ̇min is a design parameter. When the condition
abs (α (φ)) > 0 is true, it means that the current heading direction is in a repulsive
zone, so, obstacles are sensed near the robot heading direction and the robot’s
movements are restricted. The heading direction dynamics tries to align the robot
with the passage, when it succeeds, the value of φ̇ is near zero and robot does not
move (or moves slightly). The moment that these conditions are verified, the value
of narrow_passage is true, and the sentence “Wait! This passage is too narrow
for me!” is synthesized by the robot. The human can then take actions (e.g. going
back) to continue his task and search another path to get to destiny.

In addition to the two conditions specified in equation (4.23), a third condition is
added. The moment when the robot speaks is internally stored and such sentence
will be synthesized again if this moment was more than a pre-specified time in
past. This value is also a design parameter.

The condition of the equation (4.24) is used to detect the situations when the
human is moving too fast and the robot can not follow him:

too_fast = abs(vforce − v) > ∆vmax (4.24)

where vforce is the velocity attractor (when no obstacles are present) of the path

76

velocity dynamics, which is proportional to the force applied by the human to the
robot end-effector. v is the current path velocity and ∆vmax is a design parameter.
When the distance between the desired velocity and actual velocity is higher than
∆vmax threshold value, the sentence “Wait! Go slower! I can not move so fast!”
is synthesized by the robot.

With equations (4.25) and (4.26) the robot is able to detect if the human (or the
robot itself) movement is taking the free rotational joint getting to the limit.

theta_6_upper_limit = θ6 > θ6,USL ∧
dθ6

dt
≥ 0 (4.25)

theta_6_lower_limit = θ6 < θ6,LSL ∧
dθ6

dt
≤ 0 (4.26)

where θ6 is the angle value of the free rotational joint, θ6,USL and θ6,LSL are the
joint 6 upper safe limit and lower safe limit, respectively. When θ6 is near the
upper/lower safe limit and it’s value is increasing/decreasing, the sentences “Do
not go so much to the left” and “Do not go so much to the right”, respectively, are
synthesized by the robot.

As for the narrow passage condition in equation (4.23), also a time restriction is
applied to the too fast, equation (4.24), and joint 6 limits, equations (4.25) and
(4.26), conditions. This way, the robot will only repeat itself after a period of time.

77

78

Chapter 5

Results and Discussion

In this chapter we present some experimental results of the tests performed in
two scenarios that challenge the Human-Mobile Manipulator object transportation
task. The first scenario is an entrance hall, were objects were placed around in
order to test the overt behavior of the robot in a complex environment. A corridor
scenario is presented afterwards, where the human and robot transport a long
object along this corridor to a laboratory room.

In both environments, static and dynamic obstacles are in the robot’s navigation
path. As described in the strategy adopted, the path planning or goal position
is not given to the robot. It must follow the human and help him transport the
object without letting it fall.

The snapshots sequences presented below, were obtained from three videos that
can be downloaded from the Mobile and Anthropomorphic Robotics Laboratory
web server1 or started directly by pressing these links, Entrance Hall and Corridor,
if the media is locally available.

5.1 Scenario 1: Entrance Hall

The scenario layout of the entrance hall is presented by means of two video snap-
shots sequences from two different perspectives. One capturing the movements of
human-robot object transportation task for the first half of the transportation task

1http://marl.dei.uminho.pt/Public/Human-Robot_Object_Transportation/

79

http://marl.dei.uminho.pt/Public/Human-Robot_Object_Transportation/
http://marl.dei.uminho.pt/Public/Human-Robot_Object_Transportation/
http://marl.dei.uminho.pt/Public/Human-Robot_Object_Transportation/

(a) Perspective capturing the start of the
task

(b) Perspective capturing the end of the
task

Figure 5.1: Entrance Hall videos perspectives

and another capturing, essentially, the second half and end. These perspectives
are presented in Figure 5.1a and 5.1b, respectively.

In this section, the perspective shown in Figure 5.1a will be referenced as A and
Figure 5.1b as B. In addition to these two video perspectives, the dynamics of
heading direction and path velocity are presented for each snapshot.

The Figure 5.2 is organized as follows: In the left side of the figure are the snap-
shots of the video at the time instant in it’s lower right corner. On the right side,
are presented both heading direction and path velocity dynamics for the same
instant. Left and lower axis are relative to heading direction, dφ/dt and φ, re-
spectively. Right and upper axis are relative to path velocity dynamics, dv/dt and
v, respectively. Vertical solid line and dashed line are heading direction and path
velocity current values, respectively. Sinusoidal dotted green curve is the target
acquisition contribution. Red dashed curve is the obstacles contribution and solid
blue sinusoidal curve is the integration of both behaviors. Solid linear blue line is
the path velocity dynamics. Solid magenta sigmoidal curve is the sigmoidal thresh-
old function, see equation (4.19). φ units is radians, while v is m/s. Attractors
and reppelers are represented by circles.

This trail starts with the robot being positioned in the start position and aligned
with the human, as depicted in Figure 5.2 at the instant t=0s. Initially the robot
does not sense any obstacles, thus obstacles contribution is zero. The robot is al-
ready aligned with the human partner and the latter is not making any movement,
thus the behavioral variable of the heading direction dynamics is already relaxed
at the attractor, see Figure 5.2b.

From the instant t=0s to t=14s, the human performs a movement in a straight

80

line which makes the robot to follow the human, keeping the rotation near zero,
since no obstacles are sensed, and the linear velocity is proportional to the force
exerted by the human.

At the instant t=14s (Figure 5.2c), the human goes through a passage that is large
enough for the human but too narrow for the robot. In the same instant, the mobile
manipulator starts to sense obstacles in it’s navigation path. Their contributions
leads to a decrease in the robot’s speed, which is characterized by a value of 0.5
in the sigmoidal threshold function (magenta solid line in Figure 5.2d) at the
robot heading direction (solid vertical line). The desired velocity for the linear
translation of the robot is then the minimum between the velocity to follow the
human and a velocity function of the distance to the obstacles, see equation (4.18).

As the human continues his movement between the two obstacles, the robot ap-
proaches the obstacles and detects, at instant t=24s, that the passage between
these obstacles is too narrow for a safe movement. The robot then verbally alerts
the human for such situation, synthesizing the sentence: “Wait! This passage is
too narrow for me!”. Figure 5.2f depicts the heading direction dynamics and path
velocity in this situation.

The human acknowledges the robot’s difficulty and starts to push the object. The
robot, then, moves backwards (see snapshots of instants t=32s and t=38s in the
Figures 5.2g and 5.2i).

At the instant t=38s, Figure 5.2i, the human starts to change his path direction, to
go around the obstacle, in order to get to the destination. Obstacle contributions
to the heading direction dynamics is not present, since obstacles are further away
than the range of the laser range finder.

From instant t=38s to t=46s, the human changes its position, shifting the attractor
along with it. As can be seen in Figure 5.2k, 5.2m and 5.2s, the robot rotates
about itself to align with the human with the behavioral variable (robot’s heading
direction) follows very closely the moving attractor.

At the instant t=48s, an obstacle is thrown to the robot navigation path, see
sequence snapshots from Figure 5.2q to 5.2v, which strongly influences the path
velocity and heading direction.

The obstacle appears from the left of the robot (right side of Figure 5.2r) and the
resultant direction, to be avoided (repeller) shifts with obstacle movement. When

81

the obstacle is near the current heading direction of the robot, linear velocity is
now governed by the distance to this obstacle. Since the human and the mobile
manipulator were moving with a relatively high velocity, the robot can not continue
to navigate with such velocity and alerts the human partner to the situation,
synthesizing “Wait! Go slower! I can not move so fast!”. The human acknowledges
this instruction, reducing the exerted strength, and allows the robot to safely avoid
the obstacle, see snapshots sequence from instant t=53 to t=1:04m, Figures 5.2w
to 5.2ab.

Afterwards, the human went through a wider passage to achieve the goal. Around
instant t=1:12m, the robot was entering this passage. As can be seen in Fig-
ure 5.2ad two resultant repellers of the obstacles contribution are separated enough,
thus it is safe for the robot to keep its movement and follow the human.

As the human continues his movement, the target acquisition dynamics tries to
align the robot’s heading direction with the human and obstacles avoidance dy-
namics tries to steer the robot through the passage without collision with near
walls. As can be seen in instant t=1:16m, Figures 5.2ae and 5.2af, two strong
repellers are erected at approximatively 90◦ and −90◦ from current heading direc-
tion. Those are the resultant contributions of both walls . Since the contribution
of each wall is approximately the same, a resultant attractor is erected at the
direction that keeps the robot equally spaced from both walls.

In the same instant, the human starts to turn around the corner, shifting the
attractor from the target acquisition dynamics. Since the robot can not follow him
due to the left wall, the robot keeps his heading direction unchanged (behavioral
variable is sitting in an attractor) until it is safe to turn (see Figure 5.2ah). At
this instant, t=1:22m, the robot also starts to turn around the corner, steering to
the human direction. After the corner, a new passage with walls on both sides is
encountered, see Figure 5.2ai.

The task ends with the human turning in the direction of a room, t=1m:36s (see
Figure 5.2ak). The mobile manipulator follows the human, see t=1m:43s, and the
task is finished a few seconds later.

82

t=0m:00s
(a)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(b)

t=0m:14s
(c)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(d)

t=0m:24s
Wait! This passage
is too narrow for me

(e)
0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(f)

t=0m:32s
(g)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(h)

Figure 5.2: Snapshots sequence and dynamics for entrance hall scenario. Left side:
snapshots at the specified time. On the right side, are presented both heading
direction and path velocity dynamics for same instant. Left and lower axis are
relative to heading direction, dφ/dt and φ, respectively. Right and upper axis are
relative to path velocity dynamics, dv/dt and v, respectively. φ units is radians,
while v is m/s.

83

t=0m:38s
(i)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(j)

t=0m:40s
(k)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(l)

t=0m:42s
(m)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(n)

t=0m:46s
(o)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(p)

Figure 5.2: Continued.

84

t=0m:48s
(q)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(r)

t=0m:49s
(s)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(t)

t=0m:50s

Wait! Go
slower!
I can not

so fast
move

(u)
0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(v)

t=0m:53s
(w)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(x)

Figure 5.2: Continued.

85

t=0m:59s
(y)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(z)

t=1m:04s
(aa)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(ab)

t=1m:12s
(ac)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(ad)

t=1m:16s
(ae)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(af)

Figure 5.2: Continued.

86

t=1m:22s
(ag)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(ah)

t=1m:29s
(ai)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(aj)

t=1m:36s
(ak)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(al)

t=1m:43s
(am)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(an)

Figure 5.2: Continued.

87

5.2 Scenario 2: Corridor

The second scenario is a narrow corridor, although wide enough for the robot to
move. The human and mobile manipulator are already cooperatively transporting
the object from a room to another. The presented snapshots show the sequence
of movements at key moments, from the halfway of the corridor until the desired
location, inside the room.

At time t=0s (t=0 is relative to the first snapshot presented), see Figure 5.3, the
transportation task is being carried at cruise velocity (near the maximum linear
velocity of the mobile platform). As previously shown, two strong repellers are
erected in the walls’ directions. Since the corridor is wide enough, no repeller
is erected in the robot’s heading direction and the robot can follow the human.
Around t=8s (Figure 5.3c), two dynamic obstacles (two humans) are sensed by
the robot. It tries to go around the humans, but the passage between the wall and
the humans is not wide enough for the robot to go through, instant t=10s. The
robot synthesizes: “Wait! This passage is to narrow for me!”. The first human
acknowledges it, and tries to get out of the robot’s navigation path. Since the robot
has now enough space to pass, the task continues, instant t=14s, Figure 5.3h.

Around instant t=24s, the human partner starts to enter the room, while increasing
its speed, at the same time, see Figure 5.3i. The robot tries to follow the human,
but it is still in the corridor, so it can not follow the human’s trajectory and
velocity, since it needs, first, to approach the door. Hence, the robot alerts verbally
the human to the situation, synthesizing: “Wait! Go slower! I cannot move so
fast!”. The human partner decreases his speed and the robot can now approach
the entrance, without letting the object fall, and keep following the human, instant
t=27s. A few seconds later the task is finished.

5.3 Stability

With the moving robot, the directions to the obstacles and the target in the
world change, thus the resulting attractor of the heading direction dynamics shifts.
Figures 5.4a and 5.5a show the time courses of the attractor solutions for heading
direction dynamics, for scenario 1 and 2, respectively, and how the robot’s heading
direction tracks it. In Figures 5.4b and 5.5b the attractor solutions to the velocity
dynamical system are presented.

88

t=0m:00s
(a)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(b)

t=0m:08s
(c)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(d)

t=0m:10s
Wait! This passage
is too narrow for me

(e)
0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(f)

t=0m:14s
(g)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(h)

Figure 5.3: Snapshots sequence and dynamics for corridor scenario. Left side:
snapshots at the specified time. On the right side, are presented both heading
direction and path velocity dynamics for same instant. Left and lower axis are
relative to heading direction, dφ/dt and φ, respectively. Right and upper axis are
relative to path velocity dynamics, dv/dt and v, respectively. φ units is radians,
while v is m/s.

89

t=0m:24s

Wait! Go
slower! I can not
move so fast!

(i)
0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(j)

t=0m:27s
(k)

0 π/2 π 3π/2 2π

0

0.4

0.8

−0.4

−0.8 −0.24

−0.12

0

−0.12

0.24
−0.3 −0.15 0 0.15 0.3

(l)

Figure 5.3: Continued.

5.4 Summary and Discussion

In this chapter we have presented some results that support the proposed dynam-
ical architecture. To perform such tasks, no prior path planning was given to the
robot, and it was able to cooperatively transport the object with the human avoid-
ing static and dynamic obstacles. A digital compass was used to obtain the current
heading direction relatively to a world reference frame, but it’s value is solely for
documentation proposes. Then, no calibration is necessary to be performed previ-
ously to work with the robot. As the presented snapshots and dynamics graphics
illustrate, the robot navigation is very smooth and robust against perturbations,
which is the case of the sudden appearance of an obstacle in the path of the robot.

The integration of speech synthesis in the robot enhanced the execution of the
task, since the robot could alert the human to some situations where if the human
kept his movement, the robot would may let the object to fall.

It was shown also that the control variables (behavioral variables), heading di-
rection and path velocity were always in or very close to the attractor of the
corresponding dynamics, which makes the overall system asymptotically stable.

90

t(s)

Direction(rad)

(a) Heading Direction
t(s)

Velocity(m/s)

(b) Path Velocity

Figure 5.4: Evolution of the fixed points over time for scenario of the entrance hall

t(s)

Direction(rad)

(a) Heading Direction
t(s)

Velocity(m/s)

(b) Path Velocity

Figure 5.5: Evolution of the fixed points over time for scenario of the corridor

91

92

Chapter 6

Conclusion and Outlook

In this work we have addressed a Human-Robot object transportation task. A
mobile manipulator was the robot selected to such cooperation in order to enable
the team to transport the object from an initial position to a goal position.

The mobile manipulator was built under the scope of this dissertation where several
software modules were developed to access and work with the hardware compo-
nents of the mobile manipulator. The developed software was of major importance
for the completion of this dissertation during tests of the developed dynamical con-
trol architecture on robot, since it allowed an abstract interface with hardware and
all the required tasks necessary to initialize and error verification of hardware. Nev-
ertheless, the developed platform has some limitations in the maximum achievable
velocity. The robot structure and all the attached hardware are very heavy, thus
the gear of locomotion motors has a rate of 1:167, which drastically reduces the
maximum velocity of the platform to 0.2 m/s.

We have proposed an approach to Human-Robot (mobile manipulator) object
transportation task based on dynamical systems. A leader-follower strategy was
adopted and the results, documented in videos and log files, of the implementation
shows the overt smooth and stable behavior of the developed system. It was shown
that the robot is able to generate its own behavior without specific orientations of
the human partner. The necessary information to generate such movements was
gathered from the sensory system of the robot. As described previously, the robot
does not have a map of the working environment and yet was able to avoid static
and dynamic obstacles.

In the face of complex situations, the robot was able to express itself verbally to

93

alert the human to the situation. This feature was of major importance during
Human-Robot object transportation, since the environment is unknown, unstruc-
tured and changing and some situations, as the human moving too fast may induce
the robot to let the object to fall.

The designed dynamical architecture endowed then the mobile manipulator with
autonomous capabilities to complete a Human-Robot Object Transportation task.

Nevertheless, the robot arm was kept stationary in order to make the execution of
this dissertation feasible to be performed in the allocated time to it. The issue of
controlling simultaneously the movement of the robotic arm will be addressed in
the very near future.

In addition to arm issue, further research in Human-Robot Object Transportation
may be addressed. During transportation task it was registered that the human has
to continuously exert strength pushing or pulling the object to keep the robot in
movement. An active cooperation may enhance this task. An intention recognition
capability based on signal measured from the arm gripper may reduce the human
effort to keep the robot in movement.

In future work it may be desirable to add a speech recognition mechanism to the
robot in order to improve the verbal interaction between the human and robot to
accomplish a more elaborated task. Simple commands such as turn-right, turn-left,
wait and move faster may enhance the human experience and the robot can have a
feedback from the human to his behavior. In addition to those simple commands, it
can be included an adaptation/learning mechanism which allows the robot to tune
its internal design parameters on behalf of human commands such as “No! Here
you can not pass!” or “You are going too close to obstacles, please stay away!”. The
association of the intention recognition and bilateral communication also allows
the human to specify how he wants the robot to acknowledge his movements. A
“You are not helping too much! I am pushing too hard the object!” message may
induce the robot to tune it’s intention recognition mechanism to reduce the human
strength. The robot can then adapt to the human partner.

94

Bibliography

O. M. Al-Jarrah and Y. F. Zheng, “Arm-manipulator coordination for load sharing
using reflexive motion control,” in Robotics and Automation, 1997. Proceedings.,
1997 IEEE International Conference on, vol. 3, 1997, pp. 2326 —-2331 vol.3.

——, “Arm-manipulator coordination for load sharing using variable compliance
control,” in Robotics and Automation, 1997. Proceedings., 1997 IEEE Interna-
tional Conference on, vol. 1, 1997, pp. 895 —-900 vol.1.

P. Althaus, “Indoor Navigation for Mobile Robots : Control and Representations,”
Ph.D. dissertation, Royal Institute of Technology, 2003.

H. Arai, T. Takubo, Y. Hayashibara, and K. Tanie, “Human-robot cooperative ma-
nipulation using a virtual nonholonomic constraint,” in Robotics and Automa-
tion, 2000. Proceedings. ICRA ’00. IEEE International Conference on, vol. 4,
2000, pp. 4063 —-4069 vol.4.

E. Bicho and G. Schöner, “Target position estimation, target acquisition, and
obstacle avoidance,” in Industrial Electronics, 1997. ISIE ’97., Proceedings of
the IEEE International Symposium on, vol. 1, 1997, pp. SS13 —-SS20 vol.1.

E. Bicho, Dynamic Approach to Behavior-Based Robotics: Design, Specification,
Analysis, Simulation and Implementation. Shaker Verlag, 2000.

E. Bicho and G. Schöner, “The dynamic approach to autonomous robotics demon-
strated on a low-level vehicle platform,” Robotics and Autonomous Systems,
vol. 21, no. 1, pp. 23–35, 1997.

E. Bicho, P. Mallet, and G. Schöner, “Using attractor dynamics to control au-
tonomous vehicle motion,” in Industrial Electronics Society, 1998. IECON ’98.
Proceedings of the 24th Annual Conference of the IEEE, vol. 2, 1998, pp. 1176
–1181 vol.2.

95

——, “Target Representation on an Autonomous Vehicle with Low-Level Sensors,”
The International Journal of Robotics Research, vol. 19, no. 5, pp. 424–447, 2000.

E. Bicho, L. Louro, N. Hipolito, S. Monteiro, and W. Erlhagen, “Motion control
of a mobile robot transporting a large size object in cooperation with a human:
a nonlinear dynamical systems approach,” in Proc. of the IEEE 11th Intl. Conf.
on Advanced Robotics, 2003, pp. 197–203.

M. H. Choi, B. H. Lee, and M. S. Ko, “An application of force ellipsoid to the
optimal load distribution for two cooperating robots,” in Robotics and Automa-
tion, 1992. Proceedings., 1992 IEEE International Conference on, 1992, pp. 461
—-466 vol.1.

J. D. Crawford, “Introduction to bifurcation theory,” Reviews of Modern Physics,
vol. 63, no. 4, pp. 991–1037, 1991.

D. De Carli, E. Hohert, C. A. C. Parker, S. Zoghbi, S. Leonard, E. Croft, and
A. Bicchi, “Measuring intent in human-robot cooperative manipulation,” in
Haptic Audio visual Environments and Games, 2009. HAVE 2009. IEEE In-
ternational Workshop on, 2009, pp. 159–163.

L.-P. Ellekilde and H. I. Christensen, “Control of mobile manipulator using the
dynamical systems approach,” in Robotics and Automation, 2009. ICRA ’09.
IEEE International Conference on. Ieee, 2009, pp. 1370–1376.

V. Fernandez, C. Balaguer, D. Blanco, and M. A. Salichs, “Active human-mobile
manipulator cooperation through intention recognition,” in Robotics and Au-
tomation, 2001. Proceedings 2001 ICRA. IEEE International Conference on,
vol. 3, 2001, pp. 2668 —- 2673 vol.3.

K. Fukaya, Y. Hirata, Z. Wang, and K. Kosuge, “Design and Control of A Pas-
sive Mobile Robot System for Object Transportation,” in Mechatronics and Au-
tomation, Proceedings of the 2006 IEEE International Conference on, 2006, pp.
31–36.

A. Goswami, M. A. Peshkin, and J. E. Colgate, “Passive robotics: an exploration
of mechanical computation,” in Robotics and Automation, 1990. Proceedings.,
1990 IEEE International Conference on, 1990, pp. 279 —-284 vol.1.

S. A. Green, M. Billinghurst, X. Q. Chen, and G. J. Chase, “Human-robot collab-
oration: A literature review and augmented reality approach in design,” Inter-
national Journal of Advanced Robotic Systems, vol. 5, no. 1, pp. 1–18, 2008.

96

Y. Hirata and K. Kosuge, “Distributed robot helpers handling a single object
in cooperation with a human,” in Robotics and Automation, 2000. Proceedings.
ICRA ’00. IEEE International Conference on, vol. 1, 2000, pp. 458 —-463 vol.1.

Y. Hirata, T. Takagi, K. Kosuge, H. Asama, H. Kaetsu, and K. Kawabata, “Map-
based control of distributed robot helpers for transporting an object in coop-
eration with a human,” in Robotics and Automation, 2001. Proceedings 2001
ICRA. IEEE International Conference on, vol. 3, 2001, pp. 3010 —- 3015 vol.3.

Y. Hirata, Z. Wang, and K. Kosuge, “Human-Robot Interaction Based on Passive
Robotics,” in SICE-ICASE, 2006. International Joint Conference, 2006, pp.
4206–4209.

Y. Hirata, Y. Ojima, and K. Kosuge, “Coordinated motion control of multiple
passive object handling robots based on environment information,” in Robotics
and Automation, 2009. ICRA ’09. IEEE International Conference on, 2009, pp.
2338–2343.

Y. Hirata, K. Suzuki, and K. Kosuge, “Improvement in the performance of pas-
sive motion support system with wires based on analysis of brake control,”
in Robotics and Automation (ICRA), 2011 IEEE International Conference on,
2011, pp. 4272–4277.

N. Hogan, “Impedance Control: An Approach to Manipulation: Parts {I}, {II},
and {III},” Journal of Dynamic Systems, Measurement, and Control, vol. 107,
no. 1, pp. 1–24, 1985.

R. Ikeura and H. Inooka, “Variable impedance control of a robot for cooperation
with a human,” in Robotics and Automation, 1995. Proceedings., 1995 IEEE
International Conference on, vol. 3, 1995, pp. 3097 —-3102 vol.3.

R. Ikeura, H. Monden, and H. Inooka, “Cooperative motion control of a robot and
a human,” in Robot and Human Communication, 1994. RO-MAN ’94 Nagoya,
Proceedings., 3rd IEEE International Workshop on, 1994, pp. 112–117.

K. I. Kim and Y. F. Zheng, “Unknown load distribution of two industrial robots,”
in Robotics and Automation, 1991. Proceedings., 1991 IEEE International Con-
ference on, 1991, pp. 992 —-997 vol.2.

K. Kosuge, H. Yoshida, and T. Fukuda, “Dynamic control for robot-human collab-
oration,” in Robot and Human Communication, 1993. Proceedings., 2nd IEEE
International Workshop on, 1993, pp. 398–401.

97

E. W. Large, H. I. Christensen, and R. Bajcsy, “Scaling the Dynamic Approach to
Path Planning and Control: Competition among Behavioral Constraints,” The
International Journal of Robotics Research, vol. 18, no. 1, pp. 37–58, 1999.

M. Lawitzky, A. Mörtl, and S. Hirche, “Load sharing in human-robot cooperative
manipulation,” in RO-MAN, 2010 IEEE, 2010, pp. 185–191.

K. M. Lynch and C. Liu, “Designing motion guides for ergonomic collaborative
manipulation,” in Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE
International Conference on, vol. 3, 2000, pp. 2709–2715.

Y. Maeda, T. Hara, and T. Arai, “Human-robot cooperative manipulation with
motion estimation,” Proceedings 2001 IEEERSJ International Conference on
Intelligent Robots and Systems Expanding the Societal Role of Robotics in the
the Next Millennium Cat No01CH37180, vol. 4, pp. 2240–2245, 2001.

G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet Another Robot Platform,”
International Journal of Advanced Robotic Systems, vol. 3, no. 1, pp. 43–48,
2006.

Microsoft, “Microsoft Speech API,” 2011. [Online]. Available: http://msdn.
microsoft.com/en-us/library/ms723627(v=vs.85).aspx

S. Monteiro and E. Bicho, “Attractor dynamics approach to formation control:
theory and application,” Auton. Robots, vol. 29, no. 3-4, pp. 331–355, 2010.

H. Neven and G. Schöner, “Dynamics parametrically controlled by image corre-
lations organize robot navigation,” Biological Cybernetics, vol. 75, no. 4, pp.
293–307, 1996.

F. G. Pereira, F. B. Sá, D. B. Ferreira, and R. F. Vassallo, “Object transportation
task by a human and a mobile robot,” in Industrial Technology (ICIT), 2010
IEEE International Conference on, 2010, pp. 1445–1450.

L. Perko, Differential Equations and Dynamical Systems. Berlin: Springer Verlag,
1991.

E. R. Scheinerman, Invitation to Dynamical Systems. Prentice Hall, 1996.

G. Schöner, M. Dose, and C. Engels, “Dynamics of behavior: Theory and applica-
tions for autonomous robot architectures,” Robotics and Autonomous Systems,
vol. 16, no. 2-4, pp. 213–245, 1995.

98

http://msdn.microsoft.com/en-us/library/ms723627(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms723627(v=vs.85).aspx

G. Schöner and M. Dose, “A dynamical systems approach to task-level system
integration used to plan and control autonomous vehicle motion,” Robotics and
Autonomous Systems, vol. 10, no. 4, pp. 253–267, 1992.

R. Soares and E. Bicho, “Using attractor dynamics to generate decentralized mo-
tion control of two mobile robots transporting a long object in coordination,” in
Proc. of the workshop on cooperative robotics, in IROS, 2002: 2002 IEEE/RSJ
intl. conf. on intelligent robots and systems, 2002.

R. Soares, E. Bicho, T. Machado, and W. Erlhagen, “Object transportation by
multiple mobile robots controlled by attractor dynamics: theory and imple-
mentation,” in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on, 2007, pp. 937–944.

R. Soares, “Transporte de Objectos por equipas de robôs móveis autónomos: es-
tratégias de controlo distribuidas baseadas em sistemas dinâmicos não lineares,”
Ph.D. dissertation, University of Minho, 2007.

A. Steinhage, “Dynamical Systems for the Generation of Navigation Behavior,”
Ph.D. dissertation, Ruhr-Universität Bochum, 1997.

T. Takubo, H. Arai, Y. Hayashibara, and K. Tanie, “Human-Robot Coopera-
tive Manipulation Using a Virtual Nonholonomic Constraint,” The International
Journal of Robotics Research, vol. 21, no. 5-6, pp. 541–553, 2002.

W. Wannasuphoprasit, R. B. Gillespie, J. E. Colgate, and M. A. Peshkin, “Cobot
control,” in Robotics and Automation, 1997. Proceedings., 1997 IEEE Interna-
tional Conference on, vol. 4, 1997, pp. 3571 —-3576 vol.4.

Y. Yamamoto, H. Eda, and X. Yun, “Coordinated task execution of a human and
a mobile manipulator,” in Robotics and Automation, 1996. Proceedings., 1996
IEEE International Conference on, vol. 2, 1996, pp. 1006 —-1011 vol.2.

99

	1 Introduction
	1.1 Motivation and Problem statement
	1.2 Previous Work
	1.3 Scope and Outline of the Dissertation

	2 Theoretical Framework: Non-linear Dynamical Systems
	2.1 Basic Principles
	2.1.1 Behavioral Variables
	2.1.2 Behavioral Dynamics

	3 The Mobile Manipulator: Dumbo
	3.1 Hardware
	3.1.1 Mobile Platform
	3.1.2 Manipulator (Arm)

	3.2 Software
	3.2.1 Hardware Abstraction Layer
	3.2.2 High Level Software

	3.3 Kinematics
	3.4 Conclusion

	4 A Dynamical Architecture for Control and Coordination of the Mobile Manipulator
	4.1 Strategy Adopted
	4.2 System design
	4.2.1 The dynamics of heading direction
	4.2.2 The dynamics of path velocity
	4.2.3 Speech

	5 Results and Discussion
	5.1 Scenario 1: Entrance Hall
	5.2 Scenario 2: Corridor
	5.3 Stability
	5.4 Summary and Discussion

	6 Conclusion and Outlook
	Bibliography

