
Outubro de 2008

Tese de Mestrado
Mestrado Engenharia Electronica Industrial e Computadores

Trabalho efectuado sob a orientação do
Professor Doutor Paulo Garrido

Nelson Manuel Oliveira de Faria

AMPLIDIR - A Software System for Social
Support to Decision

Universidade do Minho
Escola de Engenharia

Acknowledgements

I want to express my gratitude to Prof. Paulo Garrido for sharing all his
passion for learning, the persistence during this work and his dedication to
make this work possible.

I am in debt with my parents, which worked hard to give me the possi-
bility to reach this objective.

Finally, I want to dedicate this dissertation to my wife and my daughter.
Without their patience, support and love this dissertation would not have
been possible.

i

ii

Resumo

A exploração e aproveitamento do conhecimento do maior número posśıvel
de membros nos processos de decisão pode estimular substancialmente o
sucesso das organizações. Através do alargamento e aprofundamento da
participação dos membros é posśıvel aceder a um maior leque de percepções,
decisões alternativas e suas implicações.

Esta dissertação descreve os passos seguidos para definir os requisitos,
especificação e implementação de um protótipo de Social Decision Support
System (SDSS). A abordagem para a criação do protótipo foi a reutilização
de um bug tracker em código aberto, pela semelhança com os requesitos
seleccionados para a construção do protótipo.

O desenvolvimento do protótipo de SDSS utilizou o bug tracker Mantis
e implicou a rescrita de parte deste. A arquitectura deste providenciou
a autenticação de utilizadores, gestão de utilizadores, funcionalidades de
email, tratamento de recepção de ficheiros e gestão de sessões.

As funcionalidades implementadas no protótipo SDSS incluiu a discussão
de questões, perguntas/respostas e votações com distribuição de utilizadores
por áreas.

O ńıvel de desenvolvimento do protótipo permite testá-lo em organizações
de forma a recolher informações para as funcionalidades implementadas.

Ao longo deste trabalho, a reutilização de software de código aberto
mostrou ter vantagens para prototipagem rápida, porque resolve grande
parte dos problemas iniciais de implementação.

iii

iv

Abstract

Exploring and exploiting the knowledge of as many members as possible in
decision processes can foster substantially the success of an organization.
Through widening and deepening members participation it is possible to
access a wide range of perceptions, decision alternatives and their implica-
tions.

This dissertation describes the steps for a Social Decision Support Sys-
tem (SDSS) prototype requirements definition, design and implementation.
The approach for creating the prototype was to reuse an existing open source
bug tracker, because its functions are similar to the selected requirements
for the prototype under construction.

The basic software development of the SDSS prototype proceeded as a
rewriting of the open source Mantis bug tracker. The architecture of this
one provided user authentication, user management, email functionalities,
file upload handling and session management.

Features implemented in the SDSS prototype include issues discussion,
questions/ answers and polls, with distribution of users among different
areas.

The prototype was developed to the level where field testing in organi-
zations can be conducted to collect feedback for the implemented features.

Along this work it showed up that reusing existing open source software
for fast prototyping has advantages, as it solves most of the initial problems
in project implementation.

v

vi

Contents

1 Introduction 1

1.1 Decision processes in organizations 1

1.2 Objectives . 3

1.3 Dissertation organization . 5

2 Decision Support Systems 7

2.1 Decision Support Systems study 7

2.1.1 Evolution of Decision Support Systems 7

2.1.2 Types of Decision Support Systems 9

2.2 Decision Support Systems usage in organizations 10

2.3 Social Decision Support Systems 13

2.3.1 The potential of SDSS 15

2.4 Features for a generic SDSS 18

2.4.1 Objectives . 19

2.4.2 System features . 19

2.4.3 Opportunity for development of a Social Decision Sup-
port System . 23

2.5 Usage examples for SDSSs . 23

3 Free and Open Source Software and Bug-Trackers 25

3.1 Free and Open Source Software 25

3.2 Bug trackers - Possible approach for basis of implementation 26

3.3 Available bug trackers and features 27

3.3.1 Commercial systems 27

3.3.2 Open source systems 32

3.3.3 Bug trackers functionalities 34

3.4 Commercial versus Open Source bug trackers 36

3.5 Using a bug tracker as base for development 37

4 Prototype Design 39

4.1 Prototype objectives . 39

vii

viii CONTENTS

4.2 Prototype features description 39
4.2.1 Users authentication 39
4.2.2 Bug to issues and project to area transformation . . . 40
4.2.3 Issue submission and issue management 40
4.2.4 Questions submission and answers collecting 41
4.2.5 Voting system . 42
4.2.6 Issue “tagging” . 43

4.3 Design proposal for a DSS - Amplidir 44
4.3.1 Assumptions and dependencies 44
4.3.2 Architectural strategies 44
4.3.3 System architecture 45
4.3.4 Questions and answers 46
4.3.5 Voting system . 48
4.3.6 Issue tagging . 49
4.3.7 Detailed system design 49

5 Prototype Implementation 51

5.1 Amplidir prototype implementation 51
5.1.1 Development environment 51
5.1.2 Test environment . 53

5.2 PHP Language Overview . 53
5.2.1 PHP Introduction . 53

5.3 Implementation approach . 55
5.4 Changes in the software design 57
5.5 Help material to users . 57
5.6 Prototype Interface . 58

5.6.1 Login page . 58
5.6.2 Entry page . 58
5.6.3 Main Menu . 59
5.6.4 Issue List . 60
5.6.5 Issue comments tagging 60
5.6.6 Issue fast feedback . 61
5.6.7 Issue searching . 61
5.6.8 Question list . 62
5.6.9 Question detail . 63
5.6.10 Question submission 64
5.6.11 Poll list . 64
5.6.12 Poll detail, voting and results detail 65
5.6.13 Poll submission . 66

5.7 Tests performed . 67

CONTENTS ix

6 Conclusion 69

6.1 Results . 69

6.2 Advantages and disadvantages using the open source Mantis
bug tracker . 70

6.3 Future work . 71

6.3.1 Field test of Amplidir 71

6.3.2 New features to add 71

A Questions API 73

A.1 Class QuestionData . 73

A.2 Functions . 73

A.3 Classes and functions to be developed in questionanswer api.php 74

A.4 Functions . 74

A.5 Questions database schema 75

B Polls API 79

B.1 Class PollData . 79

B.2 Functions . 79

B.3 Functions to be developed in poll voting api.php 80

B.4 Voting system database schema 80

C Issue tagging functions and database schema 85

C.1 System actions . 85

C.2 Issue tagging database schema 85

D Detailed system design: action diagrams 87

D.1 Detailed system design: Questions action diagrams 87

D.2 Detailed system design: Polls action diagrams 95

E PHP Language Overview 101

E.1 PHP Introduction . 101

E.2 PHP Variable types . 103

E.3 PHP Operators . 104

E.4 Assignment Operators . 104

E.5 Bitwise Operators . 104

E.6 Comparison Operators . 105

E.7 Execution Operator . 105

E.8 Incrementing/Decrementing Operators 105

E.9 Logical Operators . 106

E.10 Array Operators . 106

E.11 PHP Control structures . 106

x CONTENTS

E.12 PHP functions . 108
E.13 Function arguments . 108
E.14 Function arguments by reference 108
E.15 PHP classes . 109

List of Tables

2.1 Information gaps . 16

3.1 Bug tracking commercial solutions 32
3.2 Bug Tracking open source solutions 34

4.1 User interface source code files description 47
4.2 Library source code files description 47
4.3 Voting system user interface source code files description . . . 49
4.4 Voting system library source code files description 49

xi

xii LIST OF TABLES

List of Figures

2.1 Murray Turoff model . 17

2.2 Super areas . 18

2.3 Areas Interception . 19

4.1 System overview . 46

5.1 Mantis list . 52

5.2 Amplidir issue list . 52

5.3 Login page . 58

5.4 Entry page . 59

5.5 Main menu . 60

5.6 Issue tagging . 61

5.7 Fast feedback . 61

5.8 Issue search . 62

5.9 Issue search results . 62

5.10 Question list . 63

5.11 Question detail . 63

5.12 Question submission . 64

5.13 Poll list . 64

5.14 Poll detail . 65

5.15 Poll voting . 65

5.16 Poll results detail . 66

5.17 Poll submission . 66

A.1 Questions Database schema 75

B.1 Voting database schema . 81

D.1 Create Question . 87

D.2 Create a Question (question submission) 88

D.3 View Question list . 89

D.4 View Question . 90

xiii

xiv LIST OF FIGURES

D.5 View Question: Answers list 91
D.6 Modify Question Status . 92
D.7 Delete Question . 93
D.8 Add Answer . 94
D.9 Create a Poll . 95
D.10 View Poll list . 96
D.11 View Poll . 97
D.12 Vote on Poll . 98
D.13 Add comment to a Poll . 99

Chapter 1

Introduction

1.1 Decision processes in organizations

Herbert Simon[Simon, 1976], defined a decision as a selection from a number
of alternatives, directed toward an organizational goal or subgoal.
Accordingly, the selection of the alternative that results in the best set of
all possible consequences requires three steps (ibidem):

• Identification and listing of all the alternatives;

• Determination of all the consequences resulting from each of the al-
ternatives;

• Comparison of the accuracy and efficiency of the consequences result-
ing from each alternative.

These steps may be carried with varying degrees of breath and depth,
implying associated costs of time and resources, from seconds of thinking
of one person, to several months (or years) of many people involvement.
Carrying the steps leading to a decision may be understood as a decision
process.

In an organization many decisions must be taken, so one may say that at
any given instant a set of (inter-related) decision processes is taking place.
Success or insucess of an organization depends critically on its decision pro-
cesses delivering decisions adequate, in time, number and quality, to the
fulfilling of the organizations goals.

Awareness of the decision processes ocurring in an organization takes
several forms, for example, through the stating of a formal model as an
organizational chart. Yet, decision processes inside organizations do not
occur only accordingly to its formal model, but immersed in the organization
social reality.

1

2 Introduction

The social network in the organization influences problems formulation,
solutions created and even the decision consequences perception.

Organization members interact in a social complex social system in many
ways. Within an organization, all the people, their relationships to each
other and to the outside world constitute the social system. The behavior
of one element can affect directly or indirectly others’ behavior.

The social component is inherent to every decision process. This com-
ponent can be observed from different viewpoints:

• From inside the organization, as the members’ connections, influences,
hierarchy, leadership, sense of group behavior;

• From moral values (religion, preconceptions, political activism), exter-
nal to the organization, yet creating strong behaviors in the members
that run for that rules;

• From society laws, that compel the organization not to adopt illegal
decisions that constrain its behavior so and so. Sometimes these laws
create inside organizations lobbies that follow the rules or try to escape
them.

Not accepting that this component is part of any decision process and
not involving all the members into the process can create some negative,
yet natural, social behaviors, as groups inside the organization looking for
protection or power. This can produce confrontation instead of common
effort.

Assuming that the inherent social component in organizations is essential
to organizational performance may lead into getting:

• Members not fearing punishment as a result of thinking differently
from the majority of the other members;

• Increased organizational perception about the reality, problems and
decision effects;

• Increased true competence recognition inside the organization, based
not on politics and status, but on the efforts to reach common goals and
encompassing all organization members (global organization recogni-
tion);

• Access to information the organization does not know it exists;

• Capture of improbable and rare ideas. These improbable and rare,
deviating from average, ideas create the greatest opportunities and

Objectives 3

generate the major changes. Nicholas Taleb [Taleb, 2007] called then
Black Swans: ”Black Swan logic makes what you don’t know far more
relevant than what you do know. Consider that many Black Swans
can be caused and exacerbated by their being unexpected.”. The black
swan theory refers to a large-impact, hard-to-predict, and rare event
beyond the realm of normal expectations.

Scott Peck [Peck, 1987], created a model with different social stages for
large scale groups. The stages by level of involvement are:

• Pseudo-community: This is a stage where the members pretend to
have same objectives, and cover up their differences, by acting as if
the differences do not exist. Pseudo community can never directly lead
to community, and it is the job of the person guiding the community
building processes to shorten this period as much as possible;

• Chaos: When pseudo community fails to work, the members start
falling upon each other, giving vent to their mutual disagreements
and differences. This is a period of chaos. It is a time when the
people in the group realize that differences cannot simply be ignored.
Chaos looks counterproductive but it is the first genuine step towards
community building;

• Emptiness: After chaos comes emptiness. At this stage, the people
learn to empty themselves of those ego related factors that are pre-
venting their entry into community. Emptiness is a tough step because
it involves the death of a part of the individual. However, Scott Peck
argues, this death paves the way for the birth of a new creature, the
Community;

• True community: Having worked through emptiness, the people in
community are in complete empathy with one another. There is a
great level of tacit understanding. People are able to relate to each
other’s feelings. Discussions, even when heated, never get sour, and
motives are not questioned.

1.2 Objectives

The main objective of this work was to create a software platform prototype
to help organizations to harvest many of the potential benefits of involving
as much as possible all their members in decision processes.

The software prototype is neutral concerning to questions of author-
ity, about who takes decisions and how to take decisions. So, it is flexible

4 Introduction

enough to accommodate varying degrees of participation according to the
organization ”decisional” culture, values and practices.

This special type of Decision Support System (DSS), namely Social De-
cision Support System (SDSS), has been named Amplidir, standing for am-
plify directions (decisions).

Amplidir configures a set of tools for social support which can be used
with different degrees of involvement in the organization path to a true
community or, simply, to make a more efficient organization. The intended
consequences of using it can be related to the enhancement of the charac-
teristics of a true community, as defined by Scott Peck (ibidem);

• Inclusivity, commitment and consensus: Members accept and embrace
each other, celebrating their individuality and transcending their dif-
ferences. They commit themselves to the effort and the people in-
volved. They make decisions and reconcile their differences through
consensus.
Amplidir: a platform for all to be included in decision process, to
enable all to share and commit to decisions.

• Realism: Members bring together multiple perspectives to understand
the whole context of the situation. Decisions are more well-rounded
and humble, rather than one-sided and arrogant;
Amplidir: a platform enabling the different perspectives to be ex-
plained and to obtain feedback from other members.

• A group of all leaders: Members harness the flow of leadership to make
decisions and set a course of action. It is the spirit of community itself
that leads and not any single individual;
Amplidir: the decision will be know by everyone, even before its com-
munication. The discussion serves as introduction.

• A spirit: The true spirit of community is the spirit of peace, love,
wisdom and power. Members may view the source of this spirit as
an outgrowth of the collective self or as the manifestation of a Higher
Will.
Amplidir: Is a tool to help members to take decisions and to progress
toghether as a community.

To prepare the design and system implementation, the work was broken
in the following steps:

• Study of different types of DSS;

Dissertation organization 5

• Study of the evolution of the DSS;

• Study of current work in the SDSS field (papers and software plat-
forms);

• Create list of features for a generic SDSS;

• Study the possibility to use an open source system (bug tracker);

• Study of the existing open source “bug trackers” systems;

• Choice of an open source “bug tracker” system software to be the base
for implementation;

• Prototype design and selection of the features to be included as proof
of concept;

• Prototype implementation.

The result of this work is a prototype with source code ready for down-
load and a demo instance on line for user testing. The software platform
used the bug tracker “Mantis” as development base and has the following
features:

• Issues submission and discussion notes with different discussion types;

• User tagging of discussion notes;

• Questions and answers module;

• Polls and voting module;

• Simplified issues/notes/questions search.

1.3 Dissertation organization

The dissertation has the following organization. In Chapter 2, we can find
the study of Decision Support Systems (DSSs): different DSS types and
evolution, performed as start for the project. In this chapter, we can find
the definition and features for a generic “Social Decision Support System”.

Bug trackers offer a good base for development start, because they al-
ready address one important aspect of a DSS: the question addressing to
other organization elements and the reply/information collecting to answer
questions. Chapter 3 is a study for the existent open source bug trackers.

6 Introduction

After the study and with the bug tracker selected, the next project phase
was to select the features for the prototype and design the system. The
chapter 4 presents the Amplidir prototype design.

In Chapter 5, prototype implementation details are explained, with the
implementation approach and the changes needed to the initial design. The
tests description performed in the system are in this chapter.

Chapter 6 describes the results, conclusions and future work.

Chapter 2

Decision Support Systems

2.1 Decision Support Systems study

2.1.1 Evolution of Decision Support Systems

The origin of DSSs goes back to the 1960 decade, when researchers created
computerized models to assist in decision making and planning [Power, 2007].

Licklider [Licklider, 1992] published his ideas about the future role of
multi-access interactive computing in a paper titled “Man-Computer Sym-
biosis”.

By 1964, IBM introduced powerful mainframe computers that made cost-
effective and practical to build Management Information Systems (MIS) for
large companies. These systems provided periodic reports based on account-
ing and transaction systems.

Soon after, Scott Morton [Morton and Stephens, 1968] and colleagues
published a number of decision support articles. Ferguson and Jones
[Ferguson and Jones, 1969] discussed a computer aided decision system in
the Management Science journal.

Gerrity [Gerrity, 1971] wrote an article titled “The Design of Man-Machine
Decision Systems: An Application to Portfolio Management”. His system
was designed to support investment managers in their clients’ stock portfolio
administration.

Scott Morton [Morton, 1971] published a ground breaking book Man-
agement Decision Systems: Computer- Based Support for Decision Making.
This was the first time the term “Decision Support System” was introduced.

Alter [Alter, 1975] finished his PhD. dissertation named “A Study of
Computer Aided Decision Making in Organizations”, contributing to ex-
pansion of the DSS thinking.

Hackathorn and Keen [Hackathorn and Keen, 1981] split DSS in three

7

8 Decision Support Systems

distinct categories: Personal DSS, Group DSS and Organizational DSS.
Following this, other researches published studies with relevance, for ex-

ample: Ralph Sprague and Eric Carlson’s published in 1982 the book Build-
ing Effective Decision Support Systems. They defined a DSSs as a “class
of information system that draws on transaction processing systems and in-
teracts with the other parts of the overall information system to support
the decision-making activities of managers and other knowledge workers in
organizations” (p. 9).

The first International Conference on Decision Support Systems was held
in Atlanta, Georgia in 1981. Academic conferences provided forums for ideas
sharing, theory discussions and information exchange.

In the early 1980s, academic researchers developed a new category of soft-
ware to support group decision-making called Group Decision Support Sys-
tems abbreviated GDSSs ([Gray, 1981]; [Huber, 1982]
and [Turoff and Hiltz, 1982]). Mindsight from Execucom Systems, Group-
Systems developed at the University of Arizona and the SAMM system
developed by University of Minnesota researchers were early GDSSs.

In 1990 Red Brick Systems introduced Red Brick Warehouse, a database
management system specifically targeted to data warehousing. This database,
designed to support decision making in an organization, collects data from
the production databases so that queries can be performed without disturb-
ing the performance or the stability of production systems.

This new concept is now known as data-driven DSSs. As an interest-
ing note, in 1997 the Wal-Mart and Teradata created the world’s largest
production data warehouse at the date, with 24 Terabytes.

Heylighen [Heylighen, 1999], published the paper “Collective intelligence
and its implementation on the web: Algorithms to develop a collective
mental map”, describing several algorithms for collective problem solving
through mental mappings. Examples are:

• Averaging preferences: Instead of simple voting, members can put an
amount of vote by preference. For example: 0.5 for option A, 0.3 for
option B and 0.2 for C. This is to some degree similar to the functioning
of ant colonies, where the pheromone trail left by a particular ant can
be seen as that ant “vote” in the discussion of where best to find food
;

• Feedback: Achieved by discussion, proposing solutions and arguments
to support it. These arguments may convince others that an option is
really the best, or incite them to produce counter-arguments. In the
best case, these arguments and counter-arguments will illuminate the

Decision Support Systems study 9

broader implications of the different options, or even suggest a new
option that combines the best aspects of the previous options;

• Division of labor: The work is split among different members and
concentrated in a manager group or individual that will synthesize it
in a broader perspective.

Murray Turoff [Turoff et al., 2002] proposed a social decision support
system with a process model to achieve collective decision by dynamic voting
(the vote can be changed at anytime of the discussion process). One of the
most interesting aspects of this type of system is that the voting process
must be continuous and it must be of such a nature as to help filter and
organize the resulting material.

Rodriguez and Steinbock [Rodriguez and Steinbock, 2004] introduced a
new concept in social trust networks. Instead of simple trust links like
element A trusts element B, he proposed links of levels of trust, such as:
element A trusts completely in element B, however element B trusts 0.2 in
element A and 0.8 in element C.

In 2007, the paper “Smartocracy: Social Networks for Collective Deci-
sion Making” [Rodriguez et al., 2007] described a software system to support
large groups to take collective decisions. The collective decision is formed
by direct and indirect proxy voting, where an element’s vote is counted by
itself and for the non voters that trust him.

2.1.2 Types of Decision Support Systems

Daniel Power [Power, 2002] proposes a classification for DSSs:

• Model-driven DSS

This type of system uses data and parameters defined and provided by
decision makers to aid analyzing a situation, but they are not usually
data intensive. Dicodess 1 is an example of an open source model-
driven DSS generator.

• Communication-driven DSS

Most communications-driven DSSs target internal teams, including
partners. Their purpose can be to help conduct a meeting or users’
collaboration through data sharing. The most common technology
used to deploy the DSS is a web or client server. Examples: chats
and instant messaging software, on line collaboration and net-meeting
systems.

1http://dicodess.sourceforge.net

http://dicodess.sourceforge.net

10 Decision Support Systems

• Data-driven DSS

Most data-driven DSSs target managers, staff and product/service
suppliers. They query a database or data warehouse to seek specific
answers for specific purposes. They are available via a mainframe sys-
tem, client/server link, or via the web. Examples: computer-based
databases that have a query system to check (including the incorpo-
ration of data to add value to existing databases).

• Document-driven DSS

Document-driven DSSs are more common, targeted at a broad base of
user groups. The purpose of such a DSS is to search web pages and find
documents on a specific set of keywords or search terms. The usual
technology used to set up such DSSs is via the web or a client/server
system. Actually, this technology is in personal computers using the
software: Google Desktop Search or Microsoft Windows Search.

• Knowledge-driven DSS

Knowledge-driven DSSs can suggest or recommend actions to man-
agers. These DSSs are person-computer systems with specialized problem-
solving expertise. The “expertise” consists of knowledge about a par-
ticular domain, understanding of problems within that domain, and
“skill” at solving some of these problems.

2.2 Decision Support Systems usage in organiza-

tions

In the 80’s, organizations’ managers put many efforts building and using
DSSs. Unfortunately, the output was not satisfactory and most companies
just created systems to address specific topics for the business organization.
Every business has some particularities and the major advances were in very
powerful database systems.

Database systems and datawarehouse technology widespread the DSSs
systems usage.

There are several systems used for decision support, using database min-
ing or supporting group decisions in everyday activities, for example:

• Chordiant Customer Experience2

System to help to take the best decisions on customers contacts. The

2http://www.chordiant.com/solutions/

http://www.chordiant.com/solutions/overview.html?gclid=CM695svYkJQCFQunQwoddw7ruA

Decision Support Systems usage in organizations 11

decisions must reflect the business strategy, the interests of the cus-
tomer, their value and risk to the business. This software ensures such
approach.
The system has multiple views for different company activities. The
major company using this software is Orange3.

• FacilitatePro4

System classified as group DSS to help group problem solving and de-
cision making in on-line meetings.
The system has focus on the tasks: brainstorming, categorizing, pri-
oritization, voting, action planning, surveying and documenting.

• Microsoft Office SharePoint Server5

System that helps users to access centralized information about the
business, projects and activities.
The system has the possibility for users to create their own content
and share among the partners.

• Vanguard System6

System that covers all the organization activities, such as:

– Planning & Analysis
Collaboration in projects and activities, analysis and simulation
of alternatives.

– Knowledge Automation
For call center scripting, customer self-service troubleshooting,
product configuration and sales scripting.

– On line surveys
For customer satisfaction and employee surveys.

• IBM Cognos 8 Business Intelligence7

Reporting system and dashboard to monitor, control and take best
data based decisions.
One of the main features is the ability to let users define and share
reports over the existing data sources (self-service reporting).
The U.S. Department of Defense uses this software to control and plan
the financial budget.

3http://www.francetelecom.com/en EN/
4http://www.facilitate.com
5http://office.microsoft.com/en-us/sharepointserver
6http://www.vanguardsw.com
7http://www.cognos.com/

http://www.francetelecom.com/en_EN/
http://www.facilitate.com
http://office.microsoft.com/en-us/sharepointserver
http://www.vanguardsw.com
http://www.cognos.com/

12 Decision Support Systems

• Business Objects 8

The software helps organizations gain better insight into their business,
improving decision-making and enterprise performance.
The users can define and share reports over existing data.

Other application field is in medical care, with the following systems
available:

• TheraDoc - Expert System Platform 9

The TheraDoc Expert System Platform provides active surveillance
and real-time tools that enhance decision-making. The software has
some useful components:

– ‘Rounds Assistant to assist in patient data collection;

– Intervention Assistant to automate the medical staff through pre-
defined workflows;

– EZ Alerts Assistant to create alerts based on system collected
data.

• VisualDx 10

Designed for public health, emergency, and primary care clinicians,
the VisualDx clinical decision support software system guides diagno-
sis, treatment, and management of diseases including emerging infec-
tious diseases (EIDs) and conditions potentially caused by bioterror-
ism, chemical warfare, or radiation release.
VisualDx helps clinicians rapidly build a custom, visual differential
diagnosis based on their patient’s unique findings (e.g., symptoms,
signs, lesion type, body location, radiological findings, medical his-
tory, travel, etc.) and quickly drill down to medical images and useful,
actionable clinical information on each possible agent condition.

• DXplain 11

DxPlain was developed by the Laboratory of Computer Science at the
Massachusetts General Hospital. The software has a database for more
than 2200 different diseases.
The software has an interactive workflow for signs and symptoms data
collecting, allowing to select the potential diseases on these symptoms
and suggesting which further clinical information would be useful to
collect.

8http://www.businessobjects.com/
9http://www.theradoc.com

10http://www.logicalimages.com
11http://lcs.mgh.harvard.edu/projects/dxplain.html

http://www.businessobjects.com/
http://www.theradoc.com
http://www.logicalimages.com
http://lcs.mgh.harvard.edu/projects/dxplain.html

Social Decision Support Systems 13

2.3 Social Decision Support Systems

Collective decision-making is central to collective action. The overload prob-
lem occurs when a collective does not have the information-processing infras-
tructure to support the active participation of all its constituent members
in all relevant decision-making processes [Fischer, 1999] [Rodriguez, 2005].

The social component is intrinsic to the decision process, even if is not
explicitly assumed. One can define as social component, the connections
between people, direct or indirect, for example: hierarchy links, confidence
relations, recognized expertise, support of group members, influence opinion
makers, social meta decisions (laws, culture, moral, religion).

Recognizing the social interaction as a vital component of a decision
process will exploit the advantages of having all members involved in the
decision process.

The main advantages of this involvement are:

• Producing of more or alternative options or solutions to existing prob-
lems;

• More perception about the problem;

• Similar or parallel problems could enhance decisions or benefit from a
wide involvement;

• Perception about problems that could be created from the proposed
solutions.

A SDSS has as main objective to support active participation of all
members in the decision process.

The system will help the members to actively participate in problems
discussions, share options, participate in polls or agree with solutions. The
system must have tools (anonymity, explicitly answer request) to prevent
some group behaviors that in certain situations lead to bad decisions.

Known group critical factors to group decisions are:

• Majority consensus and silence

Studies show that members prefer to agree with the majority group
opinion rather than to express their own, even when they know the
group is wrong.
In the words of Paulus and Nijstad [Paulus and Nijstad, 2003] “Some
researchers (Summerfield, 1990) estimate that at least 7 out 10 people
in American business remain silent when their opinions are at odds
with their superiors. Even when they know better, they permit their

14 Decision Support Systems

boss to make mistakes.”
People adopt this type of position (silence), because they fear punish-
ment, which in fact happens in non-open environments. This has been
termed “organizational silence” [Morrison and Milliken, 2000].

• Polarization

When the group has very similar perception about a problem, deci-
sions could be very risky.
Other situation occurs when the group members are over confident
about the solution and aligned inside the group.
For example, if database creator team makes a reunion to analyze the
database performance, creators tend to select factors external to team
responsibility to blame for database performance, as: poor application
programming from programmers using the database.
A person new to the team could challenge the polarized group consen-
sus.

• Different participants background

In a way very similar to majority consensus, people often do not expose
their opinion because the other elements are more experienced, with
more education or are from a different hierarchy in the organizations.
Most times the people fear criticism because they do not expose their
opinions using the right terms or language or they fear their ideas are
challenging the other elements having better background.
In an open collaborative group, this different participants background
is healthy and useful for a better collaborative decision.

• Ignorance judgment and psychology cost

Some experiences by Gerstberger and Allen [Gerstberger and Allen, 1968]
proved that in very technical job positions people do not search for the
information among their colleagues because they fear the ignorance
judgment. They choose not to go by the channel of the highest qual-
ity for technical information, but rather to go to the channel of highest
accessibility (lowest psychological cost).

The use of a software platform by itself is not enough to promote a collab-
orative environment. According with Alan MacCormack [MacCormack, 2007],
the four pillars of collaborative capability are:

• People

• Process

Social Decision Support Systems 15

• Platform

• Program

The organization managers must understand the concept of collaborative
participation and promote an open collaborative environment.

A process must be in place and used by the team. The process could
consist in reporting rules and voting participation for the organization ele-
ments.

2.3.1 The potential of SDSS

The platform to help an organization to construct the confidence to share
knowledge and help the managing board to take effective decisions must
enable the members to express themselves without fearing judgments.

This means the system must provide some functionality to protect the
members’ identity enabling free opinion making.

Some elements do not have the confidence to express themselves in text
and for them the voting systems with options are best.

Despite the human nature to help and share, the organization competi-
tive environment does not foster such natural behaviors. To improve collab-
oration the organization could have a Chief Collaboration Officer with the
task of improving the performance of all collaboration efforts.

The first attempt to use these social links was made by Murray Turoff
[Turoff et al., 2002] with a new approach to solve problems, using a human-
collective problem-solving algorithm. He proposed a process model for a
SDSS, shown in Figure 2.1. Collective problem-solving, is achieved through
collecting solutions and voting.

Existing DSSs are oriented for information management and need some
type of aggregation or data mining, due to the data quantity available.
SDSSs are different because the management layer could access information
it does not know to exist inside the organization.

On the other way, the SDSSs are oriented to involve all the members in
the decision process, in a way that collective knowledge could emerge.

Table 2.1 shows the possible information gaps, and where SDSSs could
help to take better decisions.

With the extension to the system proposed by Murray Turoff to accept
information from the organization, the system can capture information that
the organization was not aware and that can have great potential.

16 Decision Support Systems

Have Do not have

Know Information you
know you have

Information you
know you do not have

Do not know Information you
do not know you
have

Information you do
not know you do not
have

Table 2.1: Information gaps

Social Decision Support Systems 17

Figure 2.1: Murray Turoff model

18 Decision Support Systems

2.4 Features for a generic SDSS

A SDSS must be capable to collect ideas, proposals, issues, concerns, infor-
mation with or without request and provide ways to discuss and produce
decisions.

It must also provide a mechanism to:
Formulate the problem →collect options for possible solutions → voting on
options → classify the solutions.

Some cases could require a “brain storm model”:
Formulate a problem → collect all opinions → share all opinions at same
time → optional voting.

Every organization has members (people) that work together (groups),
and these groups interact or intercept in interests or objectives. To capture
the organization static and dynamic structure, we will use the term “ar-
eas” to organize the members and the decisions. Static structure refers to
the organization hierarchy and dynamic struture refers to the organization
projects or initiatives. See Figure 2.2.

S u p e r A r e a (o r g a n i z a t i o n)

A r e a 1

E l e m e n t A

A r e a 2

E l e m e n t B
E l e m e n t C

A r e a 3

E l e m e n t D

Figure 2.2: Super areas

By default, an area should have at least one element. One element could
belong to several areas. See Figure 2.3.

Features for a generic SDSS 19

A r e a 1

A r e a 2

E l e m e n t A

E l e m e n t C

E l e m e n t D

E l e m e n t B

O r g a n i z a t i o n

Figure 2.3: Areas Interception

2.4.1 Objectives

The system should be able to organize the members into areas and manage
the problems in these areas. The system should also provide a way to enable
communication and knowledge sharing and givemembers the possibility of
self expressing without fear of criticism.

2.4.2 System features

For simplicity, we will consider issue any generic information introduced in
the system deemed capable of generating a decision; it could be information,
concerns, reports, etc. The requirements of a SDSS we will consider are:

• Users and areas organization

The system database must contain user information and the links
about the status in the organization: Who belongs to each area.
The database must contain the access rights of users to the provided
services: approvals, issues submissions, search.

• Issues / knowledge database

The database must be able to store the issues from users inside areas.
The database must store documents/files related with the issue.
The database must have the possibility to link issues/information.
The database must have the possibility to add comments to existing
issues.

• Voting

The system must enable a manager to propose a voting with pre-

20 Decision Support Systems

selected options and collect the voting results. It must also be able to
be configured for the following situations:

– Do not show any results;

– Show results on line during the process with or without details;

– Show results when voting is finished;

– At any time, the system must show the percentage of participa-
tion and time remaining for the voting to end.

• Complex Voting mechanisms

– Direct proxy voting
This is the type of voting when the user selects a user to vote by
him, if he or she does not vote.

– Indirect voting (trust relations)
The user vote has as much importance as more people select him
as trusted. This is indicated for communities where the voting
percentage is not considerable.

– Round voting
Voting by rounds. Each round eliminate half of proposals, until
the final solution is accepted by the majority. This schema is
vital when it is important to get majority acceptance and there
are several options.

– Expert representation
Instead of solutions, votes choose organization members by ex-
pertise in topics. The experts will discuss and select the best
option.

• Questions / Answers

The system must allow members to request help for a question.
The participants could answer and optionally attach files to answers.
The system must be capable of creating a simple voting system from
the questions / answers process, and the manager must choose the
options from those available answers.
The system must have two different approaches on the identification
of the question originator:

– Identify user;

– Do not show user identity.

The system must have the following modes for answers:

Features for a generic SDSS 21

– Forum mode: show all answers as soon as they are available;

– Brainstorm mode: show all answers only when the process is
finished;

– Open brainstorm mode: answers are shown, but without identi-
fication. Identification is showed at the end of the process;

– Inquire mode: answers are never shown.

• Search capability

The system must be capable to perform search through all the fields
in the database.
The system must be able to save the performed searches.
It must be possible to create notifications from a performed search.
It must be possible to search the issues by tagging rank (see tagging
section).

• Decision flow approval

The system must be capable of defining a decision flow approval per
area of knowledge.
The system must warn the managers that they have issues to approve.
The states of the decision flow must have at least the following at-
tributes:

– Name

– Approval users

– Current state

– Next state

• Classification component

Issues should be classified in categories according to knowledge areas
involved. The system must have a component to propose a category
to the user when he does not select one. This is very important to
reduce the number of unclassified issues.
It must be possible to reclassify a submitted issue. The issue must be
transferred to the first state of the selected category.

• Tagging system

One functionality of a social network present the web is the “tagging”
feature available on the site digg.com 12. At the site, users vote on the
web pages by importance (no pre-defined rules for importance or social

12http://www.digg.com

http://www.digg.com

22 Decision Support Systems

interactions: environment will define a natural method) and classify
the web page by categories.
In a similar way, the users must be able to select issues, vote on them,
and optionally attribute them to a predefined category. This is a
generic capability to be used if the social network wants to. It could
be used for example for alerts in issues that the community considers
deserving some attention.

• Email processing system

The system must be capable to access an email box (POP3), and
process new messages as new issues.
The system must be able to send messages to users about approval
requests and to process the reply with the selected option.
The system must be able to send an email to users requiring approval
needed and process the reply with selected option.
The system must be capable to send an email requiring a vote in an
open voting process and process the reply as a vote.
All this types of automated email interaction must be configurable by
the user.
The system must have a mechanism to ensure that the message is a
reply from a server sent message.

• Web GUI interface

The web interface must have an authentication schema (optional inte-
gration with Active Directory).
The web interface must have access to all features defined above.
The interface must allow to configure and administer users and groups.

• MyDesk system

The MyDesk is like a personal view over the SDSS. It must have:

– My approvals (issues needing approval);

– My issues (submitted issues);

– My searches;

– My management requests (voting or questions from management);

– Top-tagged issues;

Usage examples for SDSSs 23

2.4.3 Opportunity for development of a Social Decision Sup-

port System

Nowadays if a company wants to use a SDSS system, the only option is to
build a system from scratch, or use multiple tools that implement part of the
desired integrated system, like voting systems. Searching along all the dif-
ferent systems is problematic and to correlate different types of information
is difficult for a generic system.

Bug tracker systems have some similarities with a SDSS, bug tracking
being a very close concept to decision making flow:

• Members can submit the bugs;

• Other members can add more information to the discussion or even
propose solutions;

• The bug can be closed (have states).

There are missing features to help the group to take decisions as a group,
such as voting or solutions’ classification.

The usage of an open source bug tracker system as base for development
is a good solution for re-use efforts in prototype implementation.

There is a window of opportunity to build an open source system that
would be used widely and grow in features when more interested developers
join the project, since there is no available open source solution.

The open source strategy is best for this type of application because each
company has their own special requirements and companies with enough re-
sources could help in the effort to create a better SDSS for everyone.

2.5 Usage examples for Social Decision Support

Systems

Every organization can use a SDSS to involve all members in decision pro-
cesses. There are organizations where this type of system seems to fit better,
for example:

• Organizations where the expertise is not focused in the information
available but in the information analysis, i.e. Hospitals.
Doctors could use the platform to share the problems they face and
collect others’ opinions to take the best decision.
A system providing voting and tagging capability could help the prob-
lem owner to understand which opinions other doctors most support;

24 Decision Support Systems

• Organizations where the persons are geographically distributed and
need each others help, i.e. scientific research;

• Organizations addressing distributed problems over different locations:
organizations with production sites in different places that need to
share knowledge about process methods and logistics between sites;

• Organizations addressing very complex and distributed problems: na-
tional or international police. In this case, information from other
places could help to solve local cases, as hidden connections could be
found.

Chapter 3

Free and Open Source

Software and Bug-Trackers

3.1 Free and Open Source Software

According to Wikipedia [Wikipedia, 2008]: “Free and open source software,
also F/OSS, FOSS, or FLOSS (for Free/Libre/Open Source Software) is
software which is liberally licensed1 to grant the right of users to study,
change, and improve its design through the availability of its source code2.
This approach has gained both momentum and acceptance as the potential
benefits have been increasingly recognized by both individuals and corporate
players.”

The distinction between free and open source hinges on intentions and
values behind the two definitions [Wikipedia, 2008]:

“F/OSS’ is an inclusive term generally synonymous with both free soft-
ware and open source software which describe similar development models,
but with differing cultures and philosophies. ’Free software’ focuses on the
philosophical freedoms it gives to users and ’open source’ focuses on the
perceived strengths of its peer-to-peer development model. Many people
relate to both aspects and so ’F/OSS’ is a term that can be used without
particular bias towards either camp.”

On the above one can contend that the “freedoms it gives to users” are
much more than “philosophical”.

Different intentions and values have not prevented FOSS from becoming
a major transformational force of todays world, including becoming a grow-
ing area of investment and revenue for the Information Technology business
[Iansiti and Richards, 2006].

1http://en.wikipedia.org/wiki/Software licence
2http://en.wikipedia.org/wiki/Source code

25

http://en.wikipedia.org/wiki/Software_licence/
http://en.wikipedia.org/wiki/Source_code

26 Free and Open Source Software and Bug-Trackers

Software used world wide which is free and open source:

• GCC: a C cross compiler available to almost all systems

• Apache: most used web server in the internet

• Firefox: popular web browser

• MySQL: a database server used in most systems

• Linux: open source operating system

• OpenOffice: a office suite with word processor and spreadsheet

• CVS: source code control system

• Gimp: image manipulation

• Inkscape: vectorial image manipulation

• Java: language compiler and runtime

• Python: script language processor

• PHP: web language

• Sendmail: the project that supported the email in the internet

All these projects impacted the world as we know it today.

3.2 Bug trackers - Possible approach for basis of

implementation

Bug/issue tracking systems are software programs to enable the submission,
evaluation and follow up of issues.

In order to prioritize issues these systems usually have some type of issue
classification.

A resolution workflow to approve and resolve issues is also common. At
any time, it is possible to know who has the problem ownership, resolution
history and all the documentation related with the communication between
the reporter and the development team.

This model has mainly two different applications:

• Issue/ticket tracking systems: systems used in operations support
(software applications, operating systems support);

• Bug trackers: systems used in software development and tests.

Available bug trackers and features 27

Bug trackers implement part of the communication layer needed by an
SDSS. If the concept “project” is converted to “area” and “bug” to “issue”
or “question”, reusing this type of software as the departure point for an
SDSS is feasible.

Big software projects are using bug trackers software for social commu-
nication and interaction among developers and users.

Almost all bug trackers use a web interface as user interface to collect
the communication between users and developers about problems found in
the software. The “bottom to top” communication scheme has the property
one desires for a SDSS: raise issues to be decided upon.

The web-based interface means low maintenance costs in the infrastruc-
ture with less distributed applications.

Open source bug trackers systems appear in most cases to support big
open source projects such as Mozilla3, MySQL4 or GNU5.

3.3 Available bug trackers and features

3.3.1 Commercial systems

Table 3.1 shows several available commercial solutions for bug tracking in
software development.

System Architecture Features

AgileEdge Web based
Developed in JAVA
Database:
Oracle 8.0 or superior
MySQL 2.4 or superior
Sql Server 2000

Email notifications
Possibility to attach files to issues
Changes history
Easy to use interface

3http://www.mozilla.org/
4http://www.mysql.com/
5http://gnu.org

http://www.mozilla.org/
http://www.mysql.com/
http://gnu.org

28 Free and Open Source Software and Bug-Trackers

Arctic PHP Bug
Tracker

Web based
MYSQL database
Implemented in PHP

Filter creations
Email notification on issue state
changes
Import of other “Bug Tracker”
databases
Multiple languages by user configu-
ration

Axosoft OnTime Developed in C#
Microsoft SQL Server
database

Possibility to follow defects requests
or tasks independently or together
Possibility to change predefined
workflow
LDAP authentication support
Predefined reports and new report
creation

BugAware Web based
Implemented in ASP
MS SQL Server
database Runs on
Windows Server

Definition of defects and tasks
Email notification on issue state
changes
Multiple languages

BugZero Web based
Implemented
in J2EE/JAVA
Supports SQL92 stan-
dard

Email processing as new requests
Possibility to change predefined
workflow
Automatic or manual assign
Predefined reports
LDAP authentication support

Clarity Web based
Implemented in
J2EE/JAVA
Proprietary filesystem
instead of a database
server

Definition of defects and tasks
Email processing as new requests

Available bug trackers and features 29

FIT — BugTrack Web based
Works with or without
database

Email notification on issue state
changes
Possibility to change predefined
workflow

FrogBugz Web based
Implemented in ASP e
PHP
databases: SQL Server
or MySQL

LDAP authentication support
Different languages support by user
Email notifications subscription on
issue state changes
Discussion groups

Geminai Web based
Implemented in C
Database: SQL Server

Possibility to change predefined
workflow
Email notifications subscription on
issue state changes
Possibility to attach files to issues

Isósceles Inter-
cepta

Web based
Implemented in .NET
Run on Windows Server

Possible to define workgroups by
project
Workgroups graphical representa-
tion
Possibility to attach files to issues
Email notifications subscription on
issue state changes

Nereidas Tracker Web based
Databases: Microsoft
Access, Microsoft SQL
Server or Oracle

Email processing as new requests
Email notifications subscription on
issue state changes
Multiple time zones supported
Multiple projects and groups
Multiple languages configurable by
user

Rational Clear-
Quest(IBM)

Web based
Works on multiple plat-
forms

LDAP authentication support
Workflow definition
Email notification on issue state
changes

30 Free and Open Source Software and Bug-Trackers

Serena Teatradas Web based
Run on servers:
Windows
Red Hat Linux AS 4.0
Solaris 9
Solaris 10
Databases:
Microsoft SQL Server
2000/2005
IBM DB2 Universal
Database v8.2
Oracle v9.2.0.7 or 10g
Sybase Adaptive Server
Enterprise
version 12.5.4

Microsoft Access 2002
Multiple projects and groups
The solution is part of the ITIL pro-
cess
Mobile platforms support

TestTrack Pro Web based
Databases:
TestTrack native
SQL Server 2000 Enter-
prise
Oracle 9i, 10g
MySQL 5.0
ODBC-compatible

LDAP authentication support
Email notifications subscription on
issue state changes
Possibility to change predefined
workflow

Track+ Web based
Databases:
SQL Server
Oracle

Multiple projects and groups
Email notifications
Possibility to change predefined
workflow
Possibility to attach files to issues
Email processing as new requests
Multiple languages configurable by
user

Available bug trackers and features 31

TrackStudio Web based
Operating Systems:
Microsoft Windows
NT/2000/2003/XP
Linux
Sun Solaris
Hewlett Packard HP-
UX
IBM AIX
FreeBSD
Databases:
ORACLE 8i, 9i, 10g
IBM DB2 8.2
MS SQL Server 2000
SP3, 2005
Firebird 2.0
PostgreSQL 8.2
HSQLDB 1.8.0
MySQL 4.1

Multiple projects and sub projects
Possibility to change predefined
workflow
Possibility to create custom fields by
project and workflow
Email Notifications
Automatic email processing for:
submitting, changing priorities
Web based reports
Reports exporting
LDAP, Active Directory and NTLM
support

Unfuddle Web based
MYSQL database

Web based reports
Email notifications

VisionProject Web based
Implemented in
JSP/Java
Databases: SQL Server
or MySQL

Supports issues, tasks and surveys
Email notifications
Automatic email processing
Possibility to attach files to issues
Possibility to change predefined
workflow

32 Free and Open Source Software and Bug-Trackers

Woodpecker Issue
Tracker

Web based
MySQL database
Implemented in PHP

Predefined workflow (Recorded, In-
Process, Repaired, Testing, Tested,
Complete)
Possibility to change predefined
workflow
No limits on projects or users
Configurable permissions on user
level
Possibility to attach files to issues
Email notification on issue state
changes

yKAP Web based
Microsoft Windows
Server
Database:MS
SQLServer

Possibility to change predefined
workflow
Email notifications

Table 3.1: Bug tracking commercial solutions

3.3.2 Open source systems

In almost all fields where commercial systems exist, the open source move-
ment aggregates programmers that build together systems in open source.
These programmers build open source systems to compete with proprietary
systems or simply to program in areas they do not have other way to work
on.

Table 3.2 shows available open source systems addressing bug tracking
in software development.

System Language

Database

Features

Bug-A-Boo CGI None Fixed workflow

Bugzilla Perl MySql Speed database optimization
Advanced search
Email integration: notifications and
processing
Intuitive permission system

Available bug trackers and features 33

BugTracker.NET .NET
SQL Server

Workflow redefinition
Email notifications
Unicode support

Eventum Issue PHP
MySQL

Multiple projects
Email notifications
Email processing to create new is-
sues
Issue attachments support

Jtrack Java Oracle MSSQLServer Configurable workflow by project
Email notifications
Issue attachments support
LDAP and Active Directory sup-
port
Possible usage without database
Multiple languages

Mantis PHP
MySQL

Multiple projects
Subprojects and categories support
Personal view
Predefined reports
Email notifications
Issue attachments support
RSS support
LDAP and Active Directory sup-
port
Webservice (SOAP) interface
Mobile devices support

phpBugTracker PHP
MySQL

Multiple projects
Permissions by project
HTML templates for user interface
customization
Issue attachments support

34 Free and Open Source Software and Bug-Trackers

RT: Request
Tracker

Perl
MySQL, PostGreSQL
or Oracle

Multiple languages
History and tendencies

Scarab Java
MySQL, Oracle

High configurable
Several languages
User interface is easy to configure

Table 3.2: Bug Tracking open source solutions

List of discontinued bug tracker projects:

• BugIn’Ticketing System: built in PHP and MySQL database, last
release: March 2004;

• Gnatsweb: Coded in Perl, last release: July 2003;

• Anthill Bug Manager: built in Perl and using MySQL database, last
release: December 2002;

• BugBye: using c# language, last release: June 2003.

3.3.3 Bug trackers functionalities

The main features of bug trackers are:

• Change history

System must store all issue state changes. Auditing may need this
data and it is easy to know who closed the issue and how long it takes
to solve it.

• Configurable custom fields

The system should have the ability to define custom fields by project.
For some projects there are fields that should always be filled. For
other projects these fields do not make sense, so configuration is needed.

• Easy to use

The system should be easy to use, because it is important that users
do not give up issue submission. The web interface is a forward step
because it avoids any problems in application installing, maintaining
and configuring.

Available bug trackers and features 35

• Email notifications

The system should send emails when the issues change from state, pri-
ority or are assigned. This configuration must be flexible, per project
and state. When an issue is assigned to a team element, he should be
warned by email that an issue requires his attention to be solved.

• Security

The systems have integration with existent authentication systems
such as LDAP or Active Directory. This feature enables existing user
configuration reuse. There is no need to configure the users login and
passwords across different systems, as the configuration is centralized
in LDAP. Users must be aggregated into groups and must be possible
to configure permissions by:

– Project

– Issue state change

– Fields visualization: eg end users cannot see technical discussions
between helpdesk and programmer.

– Reports: systems produce reports about open issues, closed is-
sues and resolution times. Exporting reports to Excel is usually
supported.

• Workflow

Systems have predefined workflows and possibility to configure a new
workflow. In addition, they provide a way to link some states with
users and assign automatically the issues.

• Multiple access detection

Systems must be capable to identify and prevent multiple accesses to
the same database register. System must warn user that the register
was changed since last view.

• Unicode support

Unicode support is very important to ensure that other language char-
acters are supported.

• URI (Uniform Resource Identifier) by Issue

Systems usually support URI (RFC2396). This is useful to enable
users to bookmark direct access to the issue description/history with-
out browsing through the web interface.

36 Free and Open Source Software and Bug-Trackers

• Search

Free or by field values, search is a required feature for all tools aiming
to address the issue tracking.

• File attachment

File attachment is essential because sometimes it is necessary to pro-
vide images or other files to show the occurring problem.

3.4 Commercial versus Open Source bug trackers

Commercial and open source bug tracking software are comparable in fea-
tures. The main differences when comparing both approaches are:

• Support

Commercial solutions typically have support lines and bug fixes for
urgent cases.
Open source software, does not guarantee support. This is provided
through on-line forums where specialists share and solve issues inside
the software.
To ensure proper support, companies usually contract individuals spe-
cialized in the software or contract other companies to get the opera-
tional support.

• Access to code

The access to code is an advantage of open source software. Commer-
cial solutions usually do not share the code.
Not having access to code may be catastrophic when a software pro-
ducer goes into a bankruptcy and the user needs updates or improve-
ments.
Another big problem for government and organizations is to ensure
that the bought software does not have any suspicious part.

• Improvements

Usually the open source community creates more improvement releases
than private companies do.
Despite this constant delivery of new features, sometimes the features
needed by some company are not made because they are not part of
the roadmap or they are not generic to all community.
Of course, each company could use the base software and add the
features needed.

Each company needs to evaluate which solution fits better their business.
Both approaches have advantages and disadvantages and both have space

Using a bug tracker as base for development 37

to coexist.

3.5 Using a bug tracker as base for development

The main factors to choose an open source bug tracker to base Amplidir
development were:

• Application must be web based;

• Application must run on top of open source platform, such as:

– Apache web server;

– MySQL database;

– Open source web scripting language, for example: PHP.

Taking these pre-requirements, we analyzed the following software pack-
ages:

• Mantis Bug Tracker 6

• phpBugTracker 7

After some study around installation and code analysis, we decided for
“Mantis BugTracker”, with the following arguments:

• Better organization: software is split in different libraries to access
different entities of the system, such as: bugs, users, groups, attach-
ments...

• Library framework: the existent library enables a fast module creation,
because the database access is already implemented trough class and
methods.

The main features that got us in deciding for the “Mantis BugTracker” were:

• Web based;

• Supports any platform that runs PHP (Windows, Linux, Mac, Solaris,
AS400/i5, etc);

• Available in 68 localizations;

• Simple/advanced issue pages;
6http://www.mantisbt.org
7http://phpbt.sourceforge.net/

http://www.mantisbt.org
http://phpbt.sourceforge.net/

38 Free and Open Source Software and Bug-Trackers

• Issues change log;

• Email notifications;

• Users can monitor specific issues;

• Attachments (can be saved on web server or in the database - can also
backup to an FTP account);

• Issue change history;

• Issue relationships;

• Multi-DBMS Support:

– MySQL;

– MS SQL;

– DB2;

– PostgreSQL.

Chapter 4

Prototype Design

4.1 Prototype objectives

The Amplidir prototype used the Mantis bug tracker as a development base
and addressed the following objectives:

• Authentication of users;

• Bug to issues and project to areas transformation;

• Issue submission and management;

• Questions submission and answers collecting;

• Voting system and multiple voting types;

• Issue “tagging”: users will be able to agree or disagree on issue notes,
creating an indicator for the most popular notes.

4.2 Prototype features description

The features described above have a subset of features or requirements to
implement. Next sections describe them.

4.2.1 Users authentication

The system should accept user’s authentication and allow organization by
area. Mantis bug tracker already has this feature implemented. Anonymous
access to system should not be allowed.

39

40 Prototype Design

4.2.2 Bug to issues and project to area transformation

The main concept to reuse bug trackers software is to get the “bug/project”
architecture and transform it into the “issue/area” concept.

The area concept replaces the project concept. All references to soft-
ware projects (releases, operating systems, databases, versions) should be
removed.

4.2.3 Issue submission and issue management

Users must be able to submit issues by areas and area owners should be able
to manage an issues’s state, assign to users and request more information.
Areas should hold whatever information is needed. System features for the
issue submission:

• Creation of new areas and area permission management

• Submission of issues in area with permissions

• Posting comments on issues. Some user shall be able to comment any
issue (on areas with permission), adding more information about it.

• Issues must have a state with possible values:

– new

– feedback

– verified

– assigned

– accepted

– closed (decided)

• Issues can be assigned to a manager

• System must be able to create a link (relation) between issues.

• Issues must have a history, with the following tracked actions:

– Submission

– Notes added

– Notes deleted

– Prioritization change

– Assigning change

Prototype features description 41

• System must permit configuration to send emails for area managers
on new issue submission.

• System must be able to store file attachments related to issues.

• Free search in issues

4.2.4 Questions submission and answers collecting

System must give the ability for area members to create questions. Users
must be able to answer the open questions. Features to be available:

• Create question: all members can create questions. Managers have
access to advanced answer types.

• Questions must have the attributes:

– Owner

– Summary

– Description

– Type

– Answer type

– Date submitted

– Date to close

– Last update

• Questions have two states

– Open: answers are accepted;

– Closed: answers are not accepted.

• Questions have two types:

– Authenticated: The identity of the question owner is shown;

– Anonymous: The identity of the question owner is not shown to
users.

• Question must have different answers types:

– Forum mode: All answers are shown as they are submitted;

– Advanced modes available to managers:

∗ Brainstorm mode: all answers are shown only when process
finish;

42 Prototype Design

∗ Open Brainstorm mode: answers are shown, but without
identification. Identification is showed at the end of process;

∗ Inquire mode: answers are never shown. Only question owner
can see the answers.

• Question list view by area
Users must only view or access questions lists belonging to areas with
permission.

• Email notification
Users must be notified when a new question is submitted or a question
is assigned.

• Free search in questions and answers
Users must be able to search through the questions and answers they
have permission to access.

4.2.5 Voting system

System must give managers the ability to create polls on the areas they
manage. Users must be able to vote on options in open polls. Main features
of the prototype:

• Poll creation;
System must able to create a poll in an area with a group of options
to vote on.

• Polls must have the following attributes:

– Owner

– Summary

– Description

– Type

– Voting type

– Date submitted

– Date to close

– Last update

– Options

– Comments allowed

• Polls have two states;

Prototype features description 43

– Open: voting is accepted;

– Closed: voting is not accepted.

• Polls have the following types:

– Secret voting: the results are only shown in the end of process,
without identities;

– Anonymous open voting: results are shown as they are submitted,
without identities;

– Identified open voting: results are shown as they are submitted,
with identification of the voters;

– Anonymous on close voting: results are only shown in the end of
process, with identification of the voters;

– Inquire voting: results are never shown. Only poll owner can see
the votes and identity.

• Polls may have the option for users to comment the poll, results, etc;

• The poll can be deleted by the poll owner;

• The poll cannot be edited after votes are being submitted;

• Poll list view by area;
Users must only access polls belonging to areas with permission.

• Email notification;
Users must be notified when a new poll is submitted.

• Free search in polls and comments.
Users must be able to search through the polls and comments they
have permissions for.

4.2.6 Issue “tagging”

Users must be able to agree or disagree on the issue comments. Every
comments on an issue should have a voting link; users could use this link to
vote.

This feature will provide comments classification. Comments with more
votes could show or indicate the best option. The identity of the user who
vote in each comment is not public, so only the counters are available.

44 Prototype Design

4.3 Design proposal for a Social Decision Support

System - Amplidir

4.3.1 Assumptions and dependencies

As already mentioned the system will reuse the existent Mantis bug tracker
source code (open source).

The system will run on the following platform:

• PHP 5

• Apache 2

• MySQL 5.0

The system can run wherever the Apache and PHP are supported, for
example:

• Linux

• Windows

• Solaris

Users will use a web browser to access the system (Firefox or IExplore).
The system will ask for identity and will store the sessions for the next
connections.

4.3.2 Architectural strategies

Strategies to follow:

• Programming language

PHP to be used as the developing language. The reason for this deci-
sion is that the base software source code uses this language.

• Database

The database to use is the MySQL database. The reason for this
decision is that the base system uses it and it is open source.

• Web server

The Web server to be used is the Apache 2, because it is the best web
server to run the PHP runtime software.

Design proposal for a DSS - Amplidir 45

• ADODB Library

Use of the ADODB library because the existent system uses it to
serve as a wrapper interface to the database, providing some useful
functions.

• Mantis source code

Reusing Mantis source code to implement issue, areas and permissions
The new features will be added on top of the Mantis system reusing
the area/ permissions schema.
New requisites will imply database schema changes.

• Expandable in mind

This prototype design will be used to test the acceptance of SDSSs.
The implementation will take as an objective the possibility to expand
in future developments.

• User interface

User interface will be web based and will be as simple as possible,
using only standard html format and javascript.

• Database errors

User will receive the database errors with detailed description about
the error, because this system is targeted to run inside organizations
and not on open web, where such detailed descriptions could be used
to develop exploits to the system. This behavior must be configurable.

• System information

The database will contain all the data and configurations for the sys-
tem.
The only exception are the attachment files, which will be stored in
separate file system. This decision has database performance in mind.

4.3.3 System architecture

Figure 4.1 shows the system components and the relation between the parts.

The areas will be the aggregating component. Users, issues, questions
and polls will belong to areas. Issues will have notes sent by users. Questions
will have answers submitted by users

Questions/answers and voting features was a new design. The issues part
was done reusing the bug tracking existing architecture for bug tracking.

46 Prototype Design

U s e r s A r e a s

D o c u m e n t a t i o n

I s s u e s

Q u e s t i o n s

A n s w e r s

N o t e s

P o l l s

N o t e s

R e s u l t s

I s s u e s

P o l l sQ u e s t i o n s

Figure 4.1: System overview

4.3.4 Questions and answers

System actions

Actions to implement:

• Create question

• Modify question status

• Delete question

• Question list for an area

• Question information view

• Add an answer to a question

• Search through questions and answers

User interface source code files description

The files in Table 4.1 were developed to create the actions described:

Design proposal for a DSS - Amplidir 47

File name Description

view all question page.php List all questions for the selected area

view all question inc.php Code responsible for the user interface cre-
ation for the question list view.

question view.php Show description and answers for the se-
lected question

question view inc.php Code responsible for the user interface cre-
ation for the question view.

question create.php Process the question creation submission
by the users

question change.php Process the question status and other
items change submission by the users

answer add.php Process the answer submission by the
users

answer add inc.php Code responsible for the user interface cre-
ation for the answer form.

answer view inc.php Code responsible for the user interface cre-
ation for the answers list.

Table 4.1: User interface source code files description

Library source code files description

The files in table 4.2 were developed to support the user interface actions:

File name Description

question api.php Collection of functions to deal with ques-
tions database tables and gathering infor-
mation.

questionanswer api.php Collection of functions to deal with an-
swers database tables and gathering infor-
mation.

Table 4.2: Library source code files description

Classes, functions and database schema defining Questions

The class definitions, functions and database schemas are defined in Ap-
pendix A.1.

48 Prototype Design

4.3.5 Voting system

System actions

The follow actions will be supported:

• Manager Actions

– Create poll

– Modify poll status

– Delete poll

– View poll results (non-public)

• User actions

– Question poll list for an area

– Poll information view

– Add a vote to a question

– Add comment to poll

– View poll results

– Search through polls and comments

Voting system user interface source code files description

The files in table 4.3 were developed to create the voting system described.

File name Description

view all poll page.php List all poll for the selected area

view all poll inc.php Code responsible for the user interface cre-
ation for the poll list view.

poll view.php Show description and answers for the se-
lected question

poll view inc.php Code responsible for the user interface cre-
ation for the poll view.

vote add.php Process the vote submission by the users

vote add inc.php Code responsible for the user interface cre-
ation for the vote form.

vote view inc.php Code responsible for the user interface cre-
ation for the votes list.

poll add comment.php Process the comment submission by the
users on a poll

Design proposal for a DSS - Amplidir 49

poll create.php Process the poll creation submission by
the users

poll change.php Process the poll status and other items
change submission by the users

Table 4.3: Voting system user interface source code files de-
scription

Voting System library source code files description

The files in table 4.4 were developed to support the user interface actions:

File name Description

poll api.php Collection of functions to deal with poll
database
tables and gathering information.

poll voting api.php Collection of functions to deal with votes
database tables and gathering informa-
tion.

poll comments api.php Collection of functions to deal with poll
comments
database tables and gathering informa-
tion.

Table 4.4: Voting system library source code files description

Classes and functions to be developed in poll api.php

The classes, functions and database schema is decribed in appendix B.1.

4.3.6 Issue tagging

Functions and database schema to support the issue taggin feature can be
found in appendix C.1.

4.3.7 Detailed system design: action diagrams

Diagrams with detailed action flow are in Appendix D.1.

50 Prototype Design

Chapter 5

Prototype Implementation

5.1 Amplidir prototype implementation

The Amplidir prototype implementation followed some basic ideas:

• Extreme Programming principles1

The main idea to follow from these principles was to start simple and
add functionalities.

• Keep existing abstraction layers
Prototype should mantain Mantis bug tracker abstraction layers and
reuse these layers wherever possible, without creating new layers for
existing data or GUI structures.

Despite the existing powerful interface, it was needed to rework some
GUI parts, because the GUI complexity for dealing with bug tracking is
exaggerated for the Amplidir prototype.

Therefore the search GUI page and engine was re-made to be less com-
plex, more intuitive and less dependent of the bug tracking concept. Listings
were also re-done to create a cleaner interface. Figures 5.1 and 5.2 show a
Mantis bug list and a clean issue list in Amplidir.

5.1.1 Development environment

The development environment used was the ’Wampserver 2. This software
creates an instance of:

• Apache 2.2.8
1http://www.xprogramming.com/what is xp.htm
2http://www.en.wampserver.com/

51

http://www.xprogramming.com/what_is_xp.htm/
http://www.en.wampserver.com/

52 Prototype Implementation

Figure 5.1: Mantis list

Figure 5.2: Amplidir issue list

PHP Language Overview 53

• MySQL 5.0.51b

• PHP 5.2.6

Wampserver is a Windows web development environment. It allows to
create web applications with Apache, PHP and the MySQL database. It
also comes with PHPMyAdmin and SQLiteManager for easily managing
the database. These software packages are the pre-requisites to run the
Mantis bug tracker and the Amplidir prototype. The operating system used
was Windows XP.

5.1.2 Test environment

The test environment used was a GNU/Linux server with:

• Apache2 Server

• MySQL

• phpMySQL

5.2 PHP Language Overview

5.2.1 PHP Introduction

PHP (recursive acronym for “PHP: Hypertext Preprocessor”) is an open
source scripting language used for web development. The run-time engine
run on top of web servers (Apache, Microsoft IIS) and has wide support for
common technologies as:

• Multiple database support:

– Adabas D

– dBase

– Empress

– FilePro (read-only)

– Hyperwave

– IBM DB2

– Informix

– Ingres

– InterBase

– FrontBase

54 Prototype Implementation

– mSQL

– Direct MS-SQL

– MySQL

– ODBC

– Oracle (OCI7 and OCI8)

– Ovrimos

– PostgreSQL

– SQLite

– Solid

– Sybase

– Velocis

– Unix dbm

• Output XHTML, XML, text, images, PDF files and even Flash movies

• Support for talking to other services using protocols such as LDAP,
IMAP, SNMP, NNTP, POP3, HTTP, COM and CORBA

• XML documents processing using the SAX and DOM standards

• Compression utilities (gzip, bz2, zip)

• Authentication services: KADM5 : Kerberos V and Radius

• Calendar conversions

• Credit card processing: MCVE - MCVE (Monetra) Payment and SP-
PLUS - SPPLUS Payment System

• Cryptography extensions

– Cracklib

– Hash HASH Message Digest Framework

– Mcrypt

– Mhash

– OpenSSL

• Web services

• SCA

• SOAP

Implementation approach 55

• XML-RPC

The code can be mixed with HTML to create output format. Next code
listing is a ”Hello World” script in PHP:

<html>

<head>

<title>PHP Test</title>

</head>

<body>

<?php echo ’<p>Hello World</p>’; ?>

</body>

</html>

The code is separated from the normal HTML by the strings: ’<?php’
and ’?>’.

The language is simple and powerful and supports advanced program-
ming topics, such as function parameters by reference, multidimensional
arrays, or even a class concept. In Appendix E.1, a PHP language introduc-
tion is included.

5.3 Implementation approach

The implementation followed some of the Extreme Programming principles,
such as:

• Simplicity

Start with a simple solution first and add more advanced features
later.
This approach has some advantages which help to get fast software
development:

– Early availability of software to test and collect feedback (not a
final product). This is useful to fine-tune the software design and
even to redo some parts;

– Time is not spent in constructing software for a future where its
specifications could change dramatically;

– Better alignment between software construction and final user,
because it is tested during the development;

– Feedback.

The system was tested and reviewed several times during implementa-
tion. In each review, an issue list was produced and the issues corrected
or changed into next review.

56 Prototype Implementation

• Courage

The principle of “simplicity” sometimes has a big drawback. Produced
code fully working for the first approach becomes obsolete for the next
release. Some courage is needed to throw away code where a significant
amount of time was invested. During this project, some parts were
redone, for example: listings and layouts.

Using these principles, it was decided to follow the plan:

• Put Mantis (software base) working;

• Put this software working in an available server;

• Change the Mantis software, converting bugs in issues and projects in
areas;

• Implement new functionalities;

• Perform testing;

• Review, providing feedback;

• Rewrite or modify code;

• Test, review, modify.

The software construction followed the principle of bottom up integration.
The lower software levels are constructed and integrated first (i.e. data
access functions and logic functions). The last layer to be integrated was
the user interface.
The main advantages of this approach are:

• Easier to create test cases and observe output;

• No stubs are required;

• Errors in critical modules are found early;

• It supports reuse of low-level units;

• Interface faults can be easily found. When developers substitute a test
driver by a higher level component, they have a clear model of how
the lower level component works and of the assumptions embedded in
its interface.

Changes in the software design 57

5.4 Changes in the software design

Some features and code available in the prototype were not part of the spec-
ification. These features resulted from reviews, tests and implementation
needs. It was assumed that the specification was a start statement and
changes were to be made along the implementation process as needed.

The features added were:

• Subfunctions included into the existing library to simplify interfaces;

• The search functionality was created for issues and questions.
The existing interface and code was too complex and with several fil-
ters. The prototype needed a clean interface. The search functionality
was reduced to one text field search;

• Changes since last visit
One functionality desired for the prototype was overviewing what was
created or updated since last login. The main page was used to show
the user all the issues, question and polls updated since last visit. To
implement this feature, Mantis library Tokens API was used.Basically
this API let us save in the database per user settings. The last visit is
saved and used in the login to query the system for the updated issues
or questions.

5.5 Help material to users

Most important characteristic of software is its usability. A facility for in-
troducing multi-lingual maouse sensitive help text was developed. An intro-
ductory text to the Amplidir concept is available as follow:

AMPLIDIR

AMPLIDIR is a social decision support system for organizations, based
upon collective intelligence results. The aim of AMPLIDIR is to enable or-
ganizations to explore the knowledge that every people in the organization
have about the organization itself, in order to better the quality of decisions.

Under AMPLIDIR, decision processes, being the responsibility of man-
agers, are conceived to be distributed along all the people in the organiza-
tion, in a way that is not necessarily explicit. Basically, AMPLIDIR is a
management system for messages relevant to decision processes that people
exchange. The system is designed having in mind to allow making explicit

58 Prototype Implementation

the knowledge and perceptions people have, creating an amplified social sup-
port for decision.

AMPLIDIR supports assigning people to (possibly several) areas in a
very flexible way in order to mirror the organizations static and dynamic
structure. Within AMPLIDIR, it is possible for every people in the orga-
nization to pose issues and questions relevant to decisions. Fast feedback
mechanisms allow managers to assess quickly the social relevance or support
for the issues posed. It is also possible for managers to get information on
demand from other people to base decisions, with some sophisticated query
and voting mechanisms.

5.6 Prototype Interface

5.6.1 Login page

The login page requests a login and password for user authentication. A
link is available to request an automated password recovery. See Figure 5.3.

Figure 5.3: Login page

5.6.2 Entry page

The main page presents the user with some useful information (Figure 5.4):

• Last news edited by area manager;

Prototype Interface 59

• A fast menu access to system components;

• The issues / questions and polls created or updated since last visit;

• Area selection on left of the page;

• Information bellow the menu with the current location in the system.

Figure 5.4: Entry page

5.6.3 Main Menu

The main menu is a simplified drop down menu for access to the prototype
system components (Figure 5.5):

• Issues;

• Questions;

• Polls;

• Management.

60 Prototype Implementation

For issues, questions and polls, the organization is always the same:

• All the topics(issues/questions/polls);

• Create a new topic;

• The topics initiated by me;

• Search the topics.

Figure 5.5: Main menu

5.6.4 Issue List

The issue list shows issues ordered by last update time stamp, but is possible
to order the issue list by different fields criteria. Please refer to Figure 5.2.

5.6.5 Issue comments tagging

It is possible to agree or disagree not only with the issue, but also with the
submitted comments. This gives community members the feedback of the
individual. See Figure 5.6 with the interface detail for comment tagging.

Prototype Interface 61

Figure 5.6: Issue tagging

5.6.6 Issue fast feedback

Usability is a key success factor. Fast shortcuts to be used on repetitive
actions are a way to achieve it. The fast answer feedback is provided to
reply in a fast way to simple issues. See Figure 5.7.

Figure 5.7: Fast feedback

5.6.7 Issue searching

The searching interface is clear and simple. A simple text field is presented
to the user. After one word or more are inserted, the issues having matching
text are presented. Figure 5.8 shows the searching interface and figure 5.9
is the image of a performed search.

62 Prototype Implementation

Figure 5.8: Issue search

Figure 5.9: Issue search results

5.6.8 Question list

An interface similar to the issue list was created for question listing. Please
see figure 5.10

Prototype Interface 63

Figure 5.10: Question list

5.6.9 Question detail

The question detail interface gives access to the question detail and if the
question is open, members can reply immediately, as shown in figure 5.11

Figure 5.11: Question detail

64 Prototype Implementation

5.6.10 Question submission

Figure 5.12 shows the interface to submit a new question. Some configura-
tions can be made at this point, such as question type, answer type, date to
close

Figure 5.12: Question submission

5.6.11 Poll list

Figure 5.13 shows the interface for the poll list is similar to issues and
questions, mantaining a consistent look through the interface.

Figure 5.13: Poll list

Prototype Interface 65

5.6.12 Poll detail, voting and results detail

Figures 5.14, 5.15 and 5.16 show the interface for poll details, to participate
in a poll and viewing a poll results.

Figure 5.14: Poll detail

Figure 5.15: Poll voting

66 Prototype Implementation

Figure 5.16: Poll results detail

5.6.13 Poll submission

Figure 5.17 shows the interface for new poll submission.

Figure 5.17: Poll submission

Tests performed 67

5.7 Tests performed

On top of the development test cases, the system was used as a work group
platform for the dissertation work. The reviews performed ensured testing
and proper correction of bugs found.
During development, the database was filled with issues and notes by a test
script to ensure the correct system response on the long run.

An open field test, with multiple instances of Amplidir and multiple
users to collect user feedback and prepare next versions, is planned.

68 Prototype Implementation

Chapter 6

Conclusion

6.1 Results

All the specified features for the Amplidir prototype were implemented.
Some non-specified features were also implemented. The specified and im-
plemented features were:

• Issues

– Bug into issue and project into area conversion;

– Redesign of all interface, making it simple;

– Cleared all data logic not needed for the Amplidir (bug tracking
concepts, i.e. version, release...);

– Issue tagging interface and logic.

• Questions and answers

– Database logic

– User interface

• Polls

– Database logic

– User interface

The features not specified and implemented were:

• Interface for visualization of all issues updated or created since last
login;

• Search routine for issues to simplify the existing search interface.

69

70 Conclusion

6.2 Advantages and disadvantages using the open

source Mantis bug tracker

Usage of existing software had some important advantages:

• Already existing logic to interact with data;

• Initial effort to select and utilize external components was not neces-
sary (i.e. database, authentication,...);

• Fast setup to start development and testing.

Despite the advantages, some drawbacks of the approach emerged as:

• Limitation in database growth, due to existing architecture;

• Difficulty to find tricky issues, due to the amount of code;

• Limitation in the platform to use;

• Limitation on the re-usage of components;

• Some new features could lead to a total rework of the modules;

• Side effects on reusing code that was used for more than one objective.

Despite the usage of Mantis did not show big disadvantages, some draw-
backs affected the final prototype:

• Extra work to create a clear interface without the ”bug tracking” con-
cepts;

• Rework of search capability.

Balancing the pros and cons of the choice, the result was positive and
enabled fast prototyping. There are some modules already available in the
platform, which created a better finish prototype:

• Users authentication;

• Files upload;

• File storing in database;

• Email notification API;

• Administration tool;

• Multiple database support;

• Localization already implemented;

Summarizing, Mantis is a good project to be used as base for other PHP
projects, due to common development issues are already resolved.

Future work 71

6.3 Future work

6.3.1 Field test of Amplidir

The system has now been developed to the point that it can be used in a
real environment.
A field test must be conducted to collect users’ feedback on implemented
features and improvements needed.

6.3.2 New features to add

The prototype can grow in capabilities, heading to most important advanced
features:

• Complex voting
Capture the confidence network and use it in complex voting schemes
is a challenge.
It is necessary to create algorithms to verify that the voting represents
the entire population and the confidence levels.

• Decision flow status
Implementation of a flow with the status of a decision process will
enable all members to visualize what is under evaluation for decision
and how the decision process advances.

72 Conclusion

Appendix A

Classes, functions and

database schema to question

API

A.1 Class QuestionData

Class QuestionData will be defined as follow:

class QuestionData {
var $id = 0;
var $project id = 0;
var $reporter id = 0;
var $text id = 0;
var $status = 0;
var $summary = ””;
var $question type = 0;
var $answer type = 0;
var $date submitted = ””;
var $last updated = ””;
var $date close = ””;
}

A.2 Functions

• function question get question data($p question id)
Function to return a class “QuestionData” filled with information
about a question id

73

74 Questions API

• function question get status text($status)
Function to get the status text for a status integer

• function question get questiontype text($type)
Function to get the question type text for a type integer

• function question get answertype text($type)
Function to get the answer type text for a type integer

• function get question description($questionid)
Function to get the description text for a question (from table ad question text table)

• function question update date($p question id)
Function to update last update field for a question

• function question update status($p question id , $status)
Function to update status field for a question

• function question get questions list(&$p page number, &$p per page,
&$p page count, &$p question count, $p project id = null)
Function to return a question list for an area using pagination

• function question create($project id, $reporter id, $text, $status, $sum-
mary, $ type, $answer type, $date close)
Function to create a new question, returns the question id.

A.3 Classes and functions to be developed in ques-

tionanswer api.php

Class QuestionAnswerData will be defined as follow:

class QuestionAnswerData {
var $id;
var $question id;
var $reporter id;
var $answer;
var $date submitted;
var $last modified;
}

A.4 Functions

• function answer exists($p answer id)

Questions database schema 75

• function answer ensure exists($p answer id)

• function answer is user reporter($p answer id, $p user id)

• function answer add ($p question id, $p answer text, $p private =
false, $p user id = null)

• function answer delete($p answer id)

• function answer delete all($p question id)

• function answer get text($p answer id)

• function answer get field($p answer id, $p field name)

• function answer get latest id($p answer id)

• function answer get all answers($p question id, $p user answer order,
$p user answer limit)

• function answer date update($p answer id)

• function answer set text($p answer id, $p answer text)

• function answer format id($p answer id)

A.5 Questions database schema

Next diagram shows the relations between questions and answers in database.

E x i s t i n g s y s t e m

a d _ q u e s t i o n _ t a b l e

a d _ a n s w e r _ t e x t _ t a b l e

a d _ a n s w e r _ t a b l e

a d _ q u e s t i o n _ t e x t _ t a b l e

m a n t i s _ u s e r s _ t a b l e

N e w T a b l e s

Figure A.1: Questions Database schema

76 Questions API

SQL tables schema:

–
–Table structure for table ‘ad answer table‘
–

CREATE TABLE ‘ad answer table‘ (
‘id‘ int(10) unsigned NOT NULL auto increment,
‘question id‘ int(10) unsigned NOT NULL default ’0’,
‘reporter id‘ int(10) unsigned NOT NULL default ’0’,
‘answer text id‘ int(10) unsigned NOT NULL default ’0’,
‘date submitted‘ datetime NOT NULL default ’1970-01-01 00:00:01’,
‘last modified‘ datetime NOT NULL default ’1970-01-01 00:00:01’,
PRIMARY KEY (‘id‘),
KEY ‘idx question‘ (‘question id‘),
KEY ‘idx last mod‘ (‘last modified‘)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO INCREMENT=18 ;

–
– Table structure for table ‘
–

CREATE TABLE ‘ad answer text table‘ (
‘id‘ int(10) unsigned NOT NULL auto increment,
‘note‘ text NOT NULL,
PRIMARY KEY (‘id‘)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO INCREMENT=18 ;

–
– Table structure for table ‘ad question table‘
–
CREATE TABLE ‘ad question table‘ (
‘id‘ int(10) unsigned NOT NULL auto increment,
‘project id‘ int(10) unsigned NOT NULL default ’0’,
‘reporter id‘ int(10) unsigned NOT NULL,
‘question text id‘ int(10) unsigned NOT NULL default ’0’,
‘status‘ smallint(6) NOT NULL,
‘summary‘ varchar(128) NOT NULL,
‘question type‘ smallint(6) NOT NULL default ’0’,

Questions database schema 77

‘answer type‘ smallint(6) NOT NULL default ’0’,
‘date submitted‘ datetime NOT NULL default ’1970-01-01 00:00:01’,
‘date close‘ datetime NOT NULL default ’1970-01-01 00:00:01’,
‘last updated‘ datetime NOT NULL default ’1970-01-01 00:00:01’,
PRIMARY KEY (‘id‘),
KEY ‘idx question status‘ (‘status‘),
KEY ‘idx project id‘ (‘project id‘)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO INCREMENT=3 ;

–
– Table structure for table ‘ad question text table‘
–

CREATE TABLE ‘ad question text table‘ (
‘id‘ int(10) unsigned NOT NULL auto increment,
‘note‘ text NOT NULL,
PRIMARY KEY (‘id‘)

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO INCREMENT=10 ;

78 Questions API

Appendix B

Class, functions and database

schema for polls API

B.1 Class PollData

Class PollData will be defined as follow:

class PollData{
var $id = 0;
var $project id = 0;
var $reporter id = 0;
var $text id = 0;
var $status = 0;
var $summary = ””;
var $poll type = 0;
var $allow comments=0;
var $date submitted = ””;
var $last updated = ””;
var $date close = ””;
}

B.2 Functions

• function poll get poll data($p poll id)
Function to return a class “PollData” filled with information about a
question id

• function poll get status text($status)
Function to get the status text for a status integer

79

80 Polls API

• function poll get polltype text($type)
Function to get the poll type text for a type integer

• function get poll description($poll id)
Function to get the description text for a poll (from table ad poll text table)

• function poll update date($poll id)
Function to update last update field for a question

• function poll update status($poll id , $status)
Function to update poll status

• function poll get poll list(&$p page number, &$p per page, &$p page count,
&$p poll count, $p project id = null)
Function to return a poll list for an area using pagination

• function poll create($project id, $reporter id, $text, $status, $sum-
mary, $allow comments, $date close)
Function to create a new poll, returns the poll id.

• function poll get options($poll id, $vote active)
Function to create a view for option list, the form will be active if
vote active parameter is passed.

B.3 Functions to be developed in poll voting api.php

• function poll voting add($p poll id,$reporter id,$option)
Add the vote from reporter id on option poll.

• function poll voting get total votes($p poll id)
Function to return an array with total votes by option

• function poll get statistics($p pool id)
returns a statistics list (and graph) for a poll

B.4 Voting system database schema

Next picture s possible to see the Questions & answers relations database
table diagrams.

Voting system database schema 81

E x i s t i n g s y s t e m

a d _ p o l l _ t a b l e

a d _ p o l l _ c o m m e n t _ t a b l e

a d _ o p t i o n s _ t a b l e

a d _ p o l l _ t e x t _ t a b l e

m a n t i s _ u s e r s _ t a b l e

N e w T a b l e s

a d _ p o l l _ c o m m e n t _ t e x t _ t a b l e a d _ v o t e s _ t a b l e

Figure B.1: Voting database schema

–
– Table structure for table ‘ad poll table‘
–

CREATE TABLE ‘ad poll table‘ (
‘id‘ int(10) unsigned NOT NULL auto increment,
‘project id‘ int(10) unsigned NOT NULL default ’0’,
‘reporter id‘ int(10) unsigned NOT NULL,
‘poll text id‘ int(10) unsigned NOT NULL default ’0’,
‘status‘ smallint(6) NOT NULL,
‘summary‘ varchar(128) NOT NULL,
‘poll type‘ smallint(6) NOT NULL default ’0’,
‘allow comments‘ smallint(6) NOT NULL,
‘date submitted‘ datetime NOT NULL default ’1970-01-01 00:00:01’,
‘date close‘ datetime NOT NULL default ’1970-01-01 00:00:01’,
‘last updated‘ datetime NOT NULL default ’1970-01-01 00:00:01’,
PRIMARY KEY (‘id‘),
KEY ‘idx poll status‘ (‘status‘),
KEY ‘idx project id‘ (‘project id‘)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO INCREMENT=3
;

82 Polls API

–
– Table structure for table ‘ad poll text table‘
–

CREATE TABLE ‘ad poll text table‘ (
‘id‘ int(10) unsigned NOT NULL auto increment,
‘note‘ text NOT NULL,
PRIMARY KEY (‘id‘)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO INCREMENT=10
;

–
– Table structure for table ‘ad poll comment table‘
–

CREATE TABLE ‘ ad poll comment table‘ (
‘id‘ int(10) unsigned NOT NULL auto increment,
‘poll id‘ int(10) unsigned NOT NULL default ’0’,
‘reporter id‘ int(10) unsigned NOT NULL default ’0’,
‘comment text id‘ int(10) unsigned NOT NULL default ’0’,
‘date submitted‘ datetime NOT NULL default ’1970-01-01 00:00:01’,
PRIMARY KEY (‘id‘),
KEY ‘idx poll id‘ (poll id‘),
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO INCREMENT=18
;

–
– Table structure for table ‘
–

CREATE TABLE ‘ad poll comment text table‘ (
‘id‘ int(10) unsigned NOT NULL auto increment,
‘note‘ text NOT NULL,
PRIMARY KEY (‘id‘),
KEY ‘idx poll id‘ (poll id‘),
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO INCREMENT=18
;

–

Voting system database schema 83

– Table structure for table ‘ad poll options table‘
–

CREATE TABLE ‘ ad options table‘ (
‘id‘ int(10) unsigned NOT NULL auto increment,
‘poll id‘ int(10) unsigned NOT NULL default ’0’,
‘option text ‘ text NOT NULL,
PRIMARY KEY (‘id‘),
KEY ‘idx poll id‘ (poll id‘),
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO INCREMENT=18
;

–
– Table structure for table ‘ad votes table‘
–

CREATE TABLE ‘ ad poll option table‘ (
‘poll id‘ int(10) unsigned NOT NULL default ’0’,
‘option id‘ int(10) unsigned NOT NULL default ’0’,
‘reporter id‘ int(10) unsigned NOT NULL default ’0’,
KEY ‘idx poll id‘ (poll id‘),
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO INCREMENT=18
;

84 Polls API

Appendix C

Issue tagging functions and

database schema

C.1 System actions

The following APIs will be developed to support the ”Issue Tagging”:

• function note vote($note id, $type, $userid)
Function to register a vote on a certain note.

• function get note votes($note id, $type)
Function to get the votes on a note id for a type: agree or disagree

• function already note voted($note id, $userid)
Function to call to enable the voting links for an issue to the current
user.

C.2 Issue tagging database schema

The table to be created has a relation between a note and a user.
The user cannot vote twice for the same note.
The database schema is defined as follows:

CREATE TABLE ‘mantis ad note votes table‘ (
‘note id‘ int(10) unsigned NOT NULL default ’0’,
‘vote type‘ smallint(6) unsigned NOT NULL default ’0’,
‘reporter id‘ int(10) unsigned NOT NULL default ’0’,
‘vote date‘ datetime NOT NULL,
PRIMARY KEY (‘note id‘,‘reporter id‘)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

85

86 Issue tagging functions and database schema

Appendix D

Detailed system design:

action diagrams

D.1 Detailed system design: Questions action di-

agrams

C r e a t e Q u e s t i o n A c t i o n

U s e r i s a r e a
m e m b e r ?

R e t u r n n o p e r m i s s i o n

N o

Y e s

R e t u r n p a g e w i t h
c r e a t e q u e s t i o n f o r m

Figure D.1: Create Question

87

88 Detailed system design: action diagrams

C r e a t e Q u e s t i o n A c t i o n (s u b m i s s i o n)

U s e r h a s a r e a
a c c e s s ?

R e t u r n n o p e r m i s s i o n

N o

Y e s

m a n d a t o r y f i e l d s
f i l l ed?

R e t u r n f i e l d s m i s s i n g

N o

C r e a t e q u e s t i o n u s i n g a p i
q u e s t i o n _ c r e a t e _ q u e s t i o n

E r r o r c r e a t i n g
q u e s t i o n ?

R e t u r n c r e a t i o n e r r o r

Y e s

S e n d e m a i l t o a r e a
m e m b e r s

r e t u r n q u e s t i o n v i e w
p a g e

A n s w e r
t y p e ?

I s u s e r a
m a n a g e r ?

R e t u r n n o p e r m i s s i o n

N oY e s

A d v a n c e d

F o r u m m o d e

N o

Y e s

Figure D.2: Create a Question (question submission)

Detailed system design: Questions action diagrams 89

V i e w Q u e s t i o n L i s t

U s e r h a s p e r m i s s i o n s
t o s e e t h e a r e a ?

R e t u r n n o p e r m i s s i o n

N o

Y e s

R e t u r n f i e l d s m i s s i n g

N o

G e t q u e s t i o n s f r o m d a t a b a s e

Er ro r ge t t i ng
q u e s t i o n s ?

R e t u r n c r e a t i o n e r r o r

Y e s

S e n d e m a i l t o a r e a
m e m b e r s

re tu rn ques t i on l i s t
p a g e

N o

Figure D.3: View Question list

90 Detailed system design: action diagrams

V i e w Q u e s t i o n A c t i o n

U s e r h a s p e r m i s s i o n
t o s e e t h e a r e a ?

R e t u r n n o p e r m i s s i o n

N o

Y e s

Q u e s t i o n t y p e ?

S h o w q u e s t i o n
w i t hou t i den t i f i ca t i on

S h o w q u e s t i o n
w i t h i den t i f i ca t i on

Iden t i f i ed
A n o n y m o u s

U s e r i s o w n e r o f
q u e s t i o n ?

S h o w c h a n g e
q u e s t i o n s t a t u s

Q u e s t i o n s t a t u s ?

S h o w a n s w e r
f o r m

Y e s

N o

C l o s e d

O p e n

S h o w a n s w e r s

S p e c i f i c d i a g r a m t o s h o w a n s w e r s

Figure D.4: View Question

Detailed system design: Questions action diagrams 91
V

ie
w

 Q
u

e
s

ti
o

n
 A

c
ti

o
n

 -
 A

n
s

w
e

rs
 l

is
t

V
ie

w

A
n

s
w

e
r

ty
p

e
?

B
ra

in
s

to
rm

 m
o

d
e

F
o

ru
m

 m
o

d
e

O
p

e
n

 B
ra

in
s

to
rm

 m
o

d
e

In
q

u
ir

e
 m

o
d

e

S
h

o
w

 a
ll

 a
n

s
w

e
rs

w
it

h
 i

d
e

n
ti

fi
c

a
ti

o
n

Q
u

e
s

ti
o

n
s

ta
tu

s
?

D
o

n
’t

 s
h

o
w

 a
n

s
w

e
rs

S
h

o
w

 n
u

m
b

e
r

o
f

s
u

b
m

it
te

d
 a

n
s

w
e

rs

O
p

e
n

C
lo

s
e

d

S
h

o
w

 a
ll

 a
n

s
w

e
rs

w
it

h
 i

d
e

n
ti

fi
c

a
ti

o
n

Q
u

e
s

ti
o

n
s

ta
tu

s
?

O
p

e
n

C
lo

s
e

d

S
h

o
w

 a
ll

 a
n

s
w

e
rs

w
it

h
 i

d
e

n
ti

fi
c

a
ti

o
n

S
h

o
w

 a
ll

 a
n

s
w

e
rs

w
it

h
o

u
t

id
e

n
ti

fi
c

a
ti

o
n

U
s

e
r

is

q
u

e
s

ti
o

n
 o

w
n

e
r?

S
h

o
w

 a
ll

 a
n

s
w

e
rs

w
it

h
 i

d
e

n
ti

fi
c

a
ti

o
n

Y
e

s

D
o

n
’t

 s
h

o
w

 a
n

s
w

e
rs

S
h

o
w

 n
u

m
b

e
r

o
f

s
u

b
m

it
te

d
 a

n
s

w
e

rs

Figure D.5: View Question: Answers list

92 Detailed system design: action diagrams

M o d i f y q u e s t i o n s t a t u s

I s U s e r t h e q u e s t i o n
o w n e r ?

R e t u r n n o p e r m i s s i o n

N o

Y e s

C h a n g e q u e s t i o n s t a t u s

E r r o r u p d a t i n g
s t a t u s ?

R e t u r n c r e a t i o n e r r o r

Y e s

N o

S h o w q u e s t i o n v i e w p a g e

Figure D.6: Modify Question Status

Detailed system design: Questions action diagrams 93

M o d i f y q u e s t i o n s t a t u s

I s U s e r t h e q u e s t i o n
o w n e r ?

R e t u r n n o p e r m i s s i o n

N o

Y e s

Q u e s t i o n h a s
a n s w e r s ?

R e t u r n n o t p o s s i b l e t o
d e l e t e q u e s t i o n w i t h a n s w e r s

Y e s

N o

D e l e t e q u e s t i o n

D i s p l a y q u e s t i o n l i s t

Figure D.7: Delete Question

94 Detailed system design: action diagrams

A d d a n s w e r

I s q u e s t i o n
o p e n ?

R e t u r n E r r o r : q u e s t i o n i s c l o s e d

N o

Y e s

U s e r h a v e
p e r m i s s i o n s

t o s e e t h e a r e a ?

R e t u r n E r r o r : N o p e r m i s s i o n s

N o

Y e s

U s e r a l r e a d y
a n s w e r ?

U p d a t e a n s w e r
o n d a t a b a s e

C r e a t e a n s w e r
o n d a t a b a s e

D a t a b a s e
e r r o r ?

R e t u r n E r r o r : D a t a b a s e e r r o r

Y e s

r e t u r n q u e s t i o n v i e w p a g e

Y e sN o

N o

Figure D.8: Add Answer

Detailed system design: Polls action diagrams 95

D.2 Detailed system design: Polls action diagrams

C r e a t e P o l l

U s e r i s a r e a
m a n a g e r ?

R e t u r n E r r o r : N o p e r m i s s i o n

N o

Y e s

M a n d a t o r y f i e l d s f i l l e d ? R e t u r n E r r o r : M i s s i n g f i e l d s

N o

Y e s

r e t u r n p o l l v i e w p a g e

N o

A t l e a s t 2 o p t i o n s ?

D a t a b a s e e r r o r ?

S e n d n o t i f y e m a i l

Y e s

Y e s

N o

R e t u r n E r r o r : M i s s i n g o p t i o n s

R e t u r n E r r o r :
D a t a b a s e e r r o r d e s c r i p t i o n

Figure D.9: Create a Poll

96 Detailed system design: action diagrams

V i e w P o l l L i s t

U s e r h a s a r e a
a c c e s s ?

R e t u r n E r r o r : N o p e r m i s s i o n

N o

Y e s

Show po l l l i s t f o r t he a rea

Figure D.10: View Poll list

Detailed system design: Polls action diagrams 97

V i e w P o l l

P o l l i s o p e n ? R e t u r n E r r o r : N o p e r m i s s i o n
N o

Y e s

U s e r h a s
a l r e a d y v o t e d ?

S h o w v o t i n g f o r m

P o l l t y p e ?

N o

S h o w v o t e s
b y o p t i o n

P o l l i s o p e n ?

S h o w t o t a l v o t e s
s u b m i t t e d

S h o w v o t e s w i t h o u t
i den t i t i es

Use r i s po l l
o w n e r ?

S h o w v o t e s w i t h
iden t i t i es

S h o w c o m m e n t s

S e c r e t v o t i n g

A n o n y m o u s
o p e n v o t i n g

Iden t i f i ed
o p e n v o t i n g

I n q u i r e v o t i n g

Y e s

Y e s

N o

N o Y e s

S h o w v o t e s w i t h
iden t i t i es

Figure D.11: View Poll

98 Detailed system design: action diagrams

V o t e o n P o l l

U s e r h a s a r e a
a c c e s s ?

R e t u r n E r r o r : N o p e r m i s s i o n

N o

Y e s

P o l l i s o p e n ?

Y e s

N o

U s e r a l r e a d y
v o t e ?

A d d v o t e t o d a t a b a s e

D a t a b a s e e r r o r ?

R e t u r n P o l l v i e w p a g e

R e t u r n E r r o r : P o l l i s c l o s e d

R e t u r n E r r o r : N o d u p l i c a t e d
 vo te a l lowed

R e t u r n E r r o r : D a t a b a s e e r r o r

Y e s

Y e s

N o

N o

Figure D.12: Vote on Poll

Detailed system design: Polls action diagrams 99

A d d c o m m e n t o n P o l l

U s e r h a s a r e a
a c c e s s ?

R e t u r n E r r o r : N o p e r m i s s i o n

N o

Y e s

Po l l a l l ow
c o m m e n t s ?

Y e s

N o

A d d c o m m e n t t o d a t a b a s e

D a t a b a s e e r r o r ?

R e t u r n P o l l v i e w p a g e

R e t u r n E r r o r : P o l l d o e s n ’ t a l l o w c o m m e n t s

R e t u r n E r r o r : D a t a b a s e e r r o r

Y e s

N o

Figure D.13: Add comment to a Poll

100 Detailed system design: action diagrams

Appendix E

PHP Language Overview

E.1 PHP Introduction

PHP (recursive acronym for ”PHP: Hypertext Preprocessor”) is an open
source scripting language used for web development. The run-time engine
run on top of web servers (Apache, Microsoft IIS) and has wide support for
common technologies, for example:

• Multiple database support:

– Adabas D

– dBase

– Empress

– FilePro (read-only)

– Hyperwave

– IBM DB2

– Informix

– Ingres

– InterBase

– FrontBase

– mSQL

– Direct MS-SQL

– MySQL

– ODBC

– Oracle (OCI7 and OCI8)

– Ovrimos

101

102 PHP Language Overview

– PostgreSQL

– SQLite

– Solid

– Sybase

– Velocis

– Unix dbm

• Output XHTML, XML, text, images, PDF files and even Flash movies

• Support for talking to other services using protocols such as LDAP,
IMAP, SNMP, NNTP, POP3, HTTP, COM

• Support for talking to other services using protocols such as LDAP,
IMAP, SNMP, NNTP, POP3, HTTP, COM and CORBA

• XML documents processing using the SAX and DOM standards

• Compression utilities (gzip, bz2, zip)

• Authentication Services: KADM5 : Kerberos V and Radius

• Calendar conversions

• Credit Card Processing: MCVE - MCVE (Monetra) Payment and
SPPLUS - SPPLUS Payment System

• Cryptography Extensions

– Cracklib

– Hash HASH Message Digest Framework

– Mcrypt

– Mhash

– OpenSSL

• Web Services

• SCA

• SOAP

• XML-RPC

The code can be mixed with HTML and used to create output format.
in the next code listing is a ”Hello World” script in PHP:

PHP Variable types 103

<html>

<head>

<title>PHP Test</title>

</head>

<body>

<?php echo ’<p>Hello World</p>’; ?>

</body>

</html>

The code is separated from the normal html by the strings: <?php and
?>.

The language is simple and powerful and support advanced programming
topics, such as function parameters by reference, multidimensional arrays,
or even a class concept.

E.2 PHP Variable types

PHP supports eight primitive types. Four scalar types:

• boolean

• integer

• float (floating-point number-double)

• string

Two compound types:

• array

• object (used for class Instantiation)

And two special types:

• resource (resource variables hold special handlers to opened files, database
connections and image canvas areas)

• NULL

In the next code listing the variables are initialized to show how to
initialize these variable types. Note that in PHP the variables have a $
prefix.

<?php

/* simple types */

$var_bool = TRUE; // a boolean

$var_str = "foo"; // a string

104 PHP Language Overview

$var_int = 12; // an integer

$var_float = 1.234; // a float

/* array example */

$var_array = array("foo" => "bar", 12 => true);

echo $var_array["foo"]; // print out bar

echo $var_array[12]; // print out 1

/* object example */

class car

{

function brake()

{

echo "Doing brake";

}

}

$bmw = new car; //$bmw is an object

/* resource examle */

// $connection is a resource for the databas connection

$connection = mysql_connect("localhost", "username", "pass");

?>

E.3 PHP Operators

Arithmetic operators used in PHP:

Example Name Result

-$a Negation Opposite of $a.
$a + $b Addition Sum of $a and $b.
$a - $b Subtraction Difference of $a and $b.
$a * $b Multiplication Product of $a and $b.
$a / $b Division Quotient of $a and $b.
$a % $b Modulus Remainder of $a divided by $b

E.4 Assignment Operators

The basic assignment operator is the ”̄’’, but it could be combined with
aritmetic operators and result for example like:

$result += 5; //increment the result variable by 5

E.5 Bitwise Operators

Bit operations in a high level language is not expected, but PHP supports
it.

Comparison Operators 105

The next table show the possible operations.

Example Name Result

$a & $b And Bits that are set in both $a and $b are set.
$a | $b Or Bits that are set in either $a or $b are set.
$a ˆ$b Xor Bits that are set in $a or $b but not both are set.
˜$a Not Bits that are set in $a are not set, and vice versa.
$a << $b Shift left Shift the bits of ab steps to the left
$a >> $b Shift right Shift the bits of ab steps to the right

E.6 Comparison Operators

The comparison operators are used to compare 2 values.
Next table shows the operators available to do it.

Example Name Result

$a == $b Equal TRUE if $a is equal to $b.
$a === $b Identical TRUE if $a is equal to $b,

and they are of the same type.
$a != $b Not equal TRUE if $a is not equal to $b.
$a <> $b Not equal TRUE if $a is not equal to $b.
$a !== $b Not identical TRUE if $a is not equal to $b,

or they are not of the same type.
$a < $b Less than TRUE if $a is strictly less than $b.
$a > $b Greater than TRUE if $a is strictly greater than $b.
$a <= $b Less than or equal to TRUE if $a is less than or equal to $b.
$a >= $b Greater than or equal to TRUE if $a is greater than or equal to $b.

E.7 Execution Operator

PHP has a special operator to execute commands in host machine. The
operator is the “. For example, the follow php script prints out in web page
the contents of the server root.

<?php

$output = ‘ls -al /‘;

echo "<pre>$output</pre>";

?>

E.8 Incrementing/Decrementing Operators

In the same way as C/ C++ the ++ and – operators are supported.

106 PHP Language Overview

E.9 Logical Operators

These operators can be used to conjugate comparisons.

Example Name Result

$a and $b And TRUE if both $a and $b are TRUE.
$a or $b Or TRUE if either $a or $b is TRUE.
$a xor $b Xor TRUE if either $a or $b is TRUE, but not both.
! $a Not TRUE if $a is not TRUE.
$a && $b And TRUE if both $a and $b are TRUE.
$a || $b Or TRUE if either $a or $b is TRUE.

E.10 Array Operators

PHP has special operators to deal with arrays.

Example Name Result

$a + $b Union Union of $a and $b.
$a == $b Equality TRUE if $a and $b have the same key/value pairs.
$a === $b Identity TRUE if $a and $b

have the same key/value pairs in the same order
and of the same types.

$a != $b Inequality TRUE if $a is not equal to $b.
$a <> $b Inequality TRUE if $a is not equal to $b.
$a !== $b Non-identity TRUE if $a is not identical to $b.

E.11 PHP Control structures

The PHP have several program control structures:

• if / else / else if
Statement for condition control, similar to other languages, c or java.

• while / do-while/ break / continue
Loop control with condition to continue declared in while.

• for / foreach / break / continue
”for” is used for complex loop control. Usage:

for (expr1; expr2; expr3)

statement

The first expression (expr1) is evaluated (executed) once uncondition-
ally at the beginning of the loop.

PHP Control structures 107

In the beginning of each iteration, expr2 is evaluated. If it evaluates to
TRUE, the loop continues and the nested statement(s) are executed.
If it evaluates to FALSE, the execution of the loop ends. At the end
of each iteration, expr3 is evaluated (executed).
Example:

<?php

for ($i = 1; $i <= 10; $i++) {

echo $i;

}

?>

The ”foreach” is an easy way to iterate over arrays.
Usage:

foreach (array_expression as $value)

statement

foreach (array_expression as $key => $value)

statement

For example consider next example:

<?php

$arr = array(1, 2, 3, 4);

foreach ($arr as &$value) {

$value = $value * 2;

}

?>

• switch
Switch is used to compare an expression with a list of conditions.
Unlike c++, strings can be used to compare.
Consider follow example:

<?php

switch ($i) {

case "apple":

echo "i is apple";

break;

case "bar":

echo "i is bar";

break;

case "cake":

echo "i is cake";

break;

}

?>

108 PHP Language Overview

• return
This statement is used to terminate immediately a function.

• include / require / require once / include once
Used to call a php script on the current script. ”require” will cause
program to fail if file does not exist, ”include” will not cause any
failure.
The ”include once” and ”require once” only execute the files if they
were not loaded.
These statements are the base to create libraries and organize the code.

E.12 PHP functions

A function is a block of code that can be executed whenever we need it.
See next example of a PHP function code:

<?php

function sayHello()

{

echo "Hello World!";

}

sayHello();

?>

E.13 Function arguments

It’s possible to pass arguments to be used inside the function.
See next example using arguments.

<?php

function add($x,$y)

{

$total = $x + $y;

return $total;

}

echo "1 + 16 = " . add(1,16);

?>

E.14 Function arguments by reference

You can return one object, but sometimes it is needed that functions return
more than one object.
Other usage is when the objects to be copied inside the functions are huge
(like images or memory buffers). To answer this problem, PHP uses the

PHP classes 109

same approach as other languages like c++: pass arguments by reference.
The argument passed by reference, can be accessed and modified and those
changes will be reflected outside the function.
Example of reference arguments in a function.

<?php

function getCustomerInfo(&$customerName, &$customerNumber)

{

$customerName = "Fernao Magalhaes";

$customerNumber = 32;

return true;

}

?>

E.15 PHP classes

Class are an objects abstraction, which can contain variables and methods.
The class itself is only executed when some object is instantiated as being
the class.
Next example is a PHP class code:

<?php

class SimpleClass

{

// member declaration

public $var = ’a default value’;

// method declaration

public function displayVar() {

echo $this->var;

}

}

?>

In order to use the class some code similar to next code must be used.

<?php

$classeInstance1 = new SimpleClass();

$classeInstance2 = new SimpleClass();

$classeInstance1->displayVar();

$classeInstance2->displayVar();

?>

Like other languages there are other advanced object oriented features
supported by PHP:

• Constructors and Destructors

110 PHP Language Overview

• class visibility using keywords: public, protected or private

• static members or methods

• class constants

• Class Abstraction: defining abstract methods to be implemented by
classes extending the abstract class

• Interface classes: class definitions for classes implementing the class
interface

• Overloading: ability to add methods to a class in run time.

• Reflexion: get class interface information in runtime.

Bibliography

Alter, S. (1975). A Study of Computer Aided Decision Making in Organiza-
tions. PhD thesis, MIT.

Ferguson, R. L. and Jones, C. H. (1969). ”A Computer Aided Decision
System”. Management Science, 15, pp. 550–562.

Fischer, G. (1999). ”A Group Has No Head - Conceptual Frameworks and
Systems for Supporting Social Interaction”. Joho Shori, 40, pp. 575–582.

Gerrity, T. P. J. (1971). ”Design of man-machine decision systems: an
application to portfolio management”. Sloan Management Review, 14, pp.
59–75.

Gerstberger, P. G. and Allen, T. J. (1968). ”Criteria Used by Research and
Development Engineers in the Selection of an Information Source”. Journal
of Applied Psychology, 4(52), pp. 272–279.

Gray, P. (1981). ”The SMU decision room project”. In Transactions of the
Ist International Conference on Decision Support Systems, pages 122–129,
Atlanta, USA.

Hackathorn, R. and Keen, P. (1981). ”Organizational Strategies for Personal
Computing in Decision Support Systems”. MIS Quarterly, 5, pp. 21–26.

Heylighen, F. (1999). ”Collective Intelligence and its Implementation on
the Web: Algorithms to Develop a Collective Mental Map”. Comput. Math.
Organ. Theory, 5(3), pp. 253–280.

Huber, G. P. (1982). ”Group decision support systems as aids in the use
of structured group management techniques”. In Transactions of the 2nd
International Conference on Decision Support Systems, pages 96–103.

Iansiti, M. and Richards, G. L. (2006). ”The Business of Free Software:
Enterprise Incentives, Investment, and Motivation in the Open Source Com-
munity”. Working Paper Series, Harvard Business School, No 07-028.

111

112 BIBLIOGRAPHY

Licklider, J. C. R. (1992). ”Man-Computer Symbiosis”. IEEE Ann. Hist.
Comput., 14(1), pp. 24.

MacCormack, A. (2007). ”Innovation through Global Collaboration: A New
Source of Competitive Advantage”. http://www.hbs.edu/research/pdf/07-
079.pdf.

Morrison, E. W. and Milliken, F. J. (2000). ”Organizational Silence: A
Barrier to Change and Development in a Pluralistic World”. The Academy
of Management Review, 25(4), pp. 706–725.

Morton, M. S. S. and Stephens, J. A. (1968). ”The impact of interactive vi-
sual display systems on the management planning process”. IFIP Congress,
52, pp. 1178–1184.

Morton, S. (1971). Management Decision Systems: Computer-based support
for decision making. Division of Research, Graduate School of Business
Administration, Harvard University, Boston, USA.

Paulus, P. B. and Nijstad, B. A. (2003). Group creativity innovation through
collaboration. Oxford University Press, New York, USA.

Peck, M. S. (1987). The Different Drum: Community Making and Peace.
Simon & Schuster, New York, USA.

Power, D. J. (2002). Decision support systems: concepts and resources for
managers. Quorum Books, Westport, Conn.

Power, D. J. (2007). ”A Brief History of Decision Support Systems”.

Rodriguez, M. (2005). ”Advances towards a General-Purpose
Societal-Scale Human-Collective Problem-Solving Engine”.
http://arxiv.org/pdf/cs/0501004, 0501004.

Rodriguez, M. A. and Steinbock, D. J. (2004). ”A Social Network for
Societal-Scale Decision-Making Systems”. http://arxiv.org/abs/cs/0412047,
s0412047.

Rodriguez, M. A.; Steinbock, D. J.; Watkins, J. H.; Gershenson, C.; Bollen,
J.; Grey, V.; and deGraf, B. (2007). ”Smartocracy: Social Networks for
Collective Decision Making”. In HICSS ’07: Proceedings of the 40th Annual
Hawaii International Conference on System Sciences, page 90, Washington,
DC, USA. IEEE Computer Society.

Simon, H. A. (1976). Administrative Behavior. The Free Press, New York,
USA.

BIBLIOGRAPHY 113

Taleb, N. N. (2007). The Black Swan: The Impact of the Highly Improbable.
Random House, New York, USA.

Turoff, M. and Hiltz, S. (1982). ”Computer support for group versus indi-
vidual decisions”. IEEE Transactions on Communications, COM-30:1, pp.
82–90.

Turoff, M.; Hiltz, S.; Cho, H.-K.; Li, Z.; and Wang, Y. (2002). ”Social
Decision Support Systems (SDSS)”. In HICSS ’02: Proceedings of the 35th
Annual Hawaii International Conference on System Sciences (HICSS’02)-
Volume 1, page 11, Washington, DC, USA. IEEE Computer Society.

Wikipedia (2008). ”Free and open source software”.
http://en.wikipedia.org/wiki/Free and open source software. [Online;
accessed 3 Nov 2008].

	Introduction
	Decision processes in organizations
	Objectives
	Dissertation organization

	Decision Support Systems
	Decision Support Systems study
	Evolution of Decision Support Systems
	Types of Decision Support Systems

	Decision Support Systems usage in organizations
	Social Decision Support Systems
	The potential of SDSS

	Features for a generic SDSS
	Objectives
	System features
	Opportunity for development of a Social Decision Support System

	Usage examples for SDSSs

	Free and Open Source Software and Bug-Trackers
	Free and Open Source Software
	Bug trackers - Possible approach for basis of implementation
	Available bug trackers and features
	Commercial systems
	Open source systems
	Bug trackers functionalities

	Commercial versus Open Source bug trackers
	Using a bug tracker as base for development

	Prototype Design
	Prototype objectives
	Prototype features description
	Users authentication
	Bug to issues and project to area transformation
	Issue submission and issue management
	Questions submission and answers collecting
	Voting system
	Issue ``tagging''

	Design proposal for a DSS - Amplidir
	Assumptions and dependencies
	Architectural strategies
	System architecture
	Questions and answers
	Voting system
	Issue tagging
	Detailed system design

	Prototype Implementation
	Amplidir prototype implementation
	Development environment
	Test environment

	PHP Language Overview
	PHP Introduction

	Implementation approach
	Changes in the software design
	Help material to users
	Prototype Interface
	Login page
	Entry page
	Main Menu
	Issue List
	Issue comments tagging
	Issue fast feedback
	Issue searching
	Question list
	Question detail
	Question submission
	Poll list
	Poll detail, voting and results detail
	Poll submission

	Tests performed

	Conclusion
	Results
	Advantages and disadvantages using the open source Mantis bug tracker
	Future work
	Field test of Amplidir
	New features to add

	Questions API
	Class QuestionData
	Functions
	Classes and functions to be developed in questionanswer_api.php
	Functions
	Questions database schema

	Polls API
	Class PollData
	Functions
	Functions to be developed in poll_voting_api.php
	Voting system database schema

	Issue tagging functions and database schema
	System actions
	Issue tagging database schema

	Detailed system design: action diagrams
	Detailed system design: Questions action diagrams
	Detailed system design: Polls action diagrams

	PHP Language Overview
	PHP Introduction
	PHP Variable types
	PHP Operators
	Assignment Operators
	Bitwise Operators
	Comparison Operators
	Execution Operator
	Incrementing/Decrementing Operators
	Logical Operators
	Array Operators
	PHP Control structures
	PHP functions
	Function arguments
	Function arguments by reference
	PHP classes

